УДК 620.197.3

Защита стали в растворах кислот ингибитором на основе окситетрациклина

Я.Г. Авдеев,^{1,*} К.Л. Анфилов² и Т.Э. Андреева¹

¹Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук, 119071, г. Москва, Ленинский проспект, д. 31, корп. 4, Россия ²Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», 105005, г. Москва, вн. тер. г. муниципальный округ Басманный, ул. 2-я Бауманская, д. 5, стр. 1, Россия *E-mail: avdeevavdeev@mail.ru

Аннотация

Разработан эффективный ингибитор коррозии стали Ст3 в растворах серной и фосфорной кислот на основе фармацевтического препарата ветеринарного назначения окситетрациклина. Установлено, что в индивидуальной форме этот фармацевтический препарат не обеспечивает существенной защиты стали в исследуемых средах. Более перспективно его применение в форме двухкомпонентной смеси с NH₄NCS. Предложен композиционный ингибитор 0.1-0.2% окситетрациклина+0.01% NH₄NCS, способный обеспечить эффективную длительную защиту стали в растворах H₂SO₄ с широким диапазоном концентрации кислоты (0.25–2.00 M) и температур t=20-80°C. Эта смесь существенно замедляет коррозию низкоуглеродистой стали в 1.00 М Н₃РО₄ при температурах до 95°C. Разработанная композиция не хуже по эффективности ингибирования коррозии стали в растворах H₂SO₄ и H₃PO₄ в сравнении с аналогичными смесевыми ингибиторами, созданными на основе промышленного кокамидопропил бетаина и ветеринарного препарата – трициллина.

Ключевые слова: кислотная коррозия, ингибиторы коррозии, фармацевтические препараты, низкоуглеродистая сталь, серная кислота, фосфорная кислота, окситетрациклин.

Поступила в редакцию 15.08.2025 г. После доработки 19.08.2025 г.; Принята к публикации 19.08.2025 г.

doi: 10.61852/2949-3412-2025-3-3-38-51

Введение

Возможности ингибиторной защиты металлов и сплавов в различных водных агрессивных средах химическими соединениями, используемыми в качестве фармацевтических препаратов, широко освящена в научной литературе [1-12]. Предполагается, что таким образом можно утилизировать фармацевтические препараты с истекшим сроком годности [13, 14]. Фармацевтические препараты рассматривают как экологичные или «зеленые» ингибиторы коррозии [15-18], хотя такой подход не всегда верен, поскольку они сами и продукты их распада часто токсичны и представляют угрозу для окружающей среды [1, 2, 19]. При создании ингибиторов (ИК) для промышленного применения необходимо коррозии использовать только те соединения, которые наряду с высокими защитными свойствами при коррозии металлов имеют достаточный объем промышленного производства. Ранее в этом направлении в качестве ИК низкоуглеродистых сталей в растворах HCl, H₂SO₄ и H₃PO₄ исследован бриллиантовый зеленый и некоторые другие препараты трифенилметанового ряда органических соединений [20].

В качестве основы для создания таких ИК нами выбраны противомикробные препараты трициллин (смесь пенициллина, стрептомицина и сульфаниламида) и окситетрациклин, используемые в ветеринарии для лечения сельскохозяйственных и домашних животных. Сообщаются данные об исследовании некоторых пенициллинов [21, 22], стрептомицина [23,] и окситетрациклина [24] как ИК сталей в растворах HCl. Для исследования нами выбраны имеющие важное производственное применение растворы H_2SO_4 и H_3PO_4 , проявляющие высокую агрессивность в отношении контактирующих с ними стальных изделий и технологического оборудования [25–31].

Следует исследовать влияние трициллина и окситетрациклина на коррозию низкоуглеродистой стали в растворах H_2SO_4 и H_3PO_4 . Важно рассмотреть возможность улучшения защитного действия этих соединений, используя их не в индивидуальной, а в смесевой форме. В качестве добавки для таких смесей исследуем NH₄NCS, поскольку соединения, содержащие роданид анионы, способны существенно улучшать защитное действие азотсодержащих органических соединений при защите сталей в растворах H_2SO_4 и H_3PO_4 [32–34]. Для сравнительной оценки эффективности рассматриваемых фармацевтических препаратов в защите стали параллельно в качестве ИК стали изучен промышленный ПАВ — кокамидопропил бетаин. Этот ПАВ ранее исследован нами в этом качестве для низкоуглеродистой стали в HCl [35].

Методика эксперимента

Скорость коррозии стали Ст3 (состав, в % по массе: C - 0.14-0.22; Mn - 0.40-0.65; Si - 0.13-0.30; P - до 0.04; S - до 0.05; Cr - до 0.3; Ni - до 0.3; Cu - до 0.3; As - до 0.08; N - до 0.008) в растворах H_2SO_4 и H_3PO_4 при t = 20-95°C определяли по потере массы образцов (≥ 3 -х на точку) размером $50 \times 20 \times 0.5$ мм из расчета 80 мл раствора кислоты

на образец. Перед опытом образцы зачищали на абразивном круге (ISO 9001, зернистость 60) и обезжиривали ацетоном.

В качестве ИК исследовали ветеринарные препараты трициллин (производитель «Асконт+», Россия) и окситетрациклин (производитель ООО НПП «Агрофарм», Россия). В 1 г порошка трициллина содержится: 70000 МЕ* бензилпенициллин натрия, стрептомицина сульфата сульфаниламида. 0.83 г 80000 ME И Препарат окситетрациклина представляет собой индивидуальную соль – окситетрациклина бетаин гидрохлорид. Кокамидопропил (импортер «Русхимсеть», Россия) представляет собой 45% водный раствор лаурамидопропилбетаин (H₃C-(CH₂)₁₀-CO- $NH-(CH_2)_3-N^+(CH_3)_2-CH_2-COO^-$). Растворы кокамидопропил бетаина (КАПБ) готовили так, чтобы содержание его действующего вещества было равно содержанию исследуемых фармацевтических препаратов. В статье содержание исследуемых ингибиторов в коррозионной среде приводится в % по массе.

Эффективность ингибиторов коррозии оценивали по величинам коэффициента торможения $\gamma = k_0/k_{\rm ин}$, где k_0 и $k_{\rm ин}$ — скорость коррозии в фоновом растворе и в растворе с изучаемой добавкой.

Экспериментальные результаты и их обсуждение

Серная кислота

В 1.00 М $\rm H_2SO_4$ (20°C) индивидуальные добавки исследуемых продуктов по-разному замедляют коррозию низкоуглеродистой стали (Таблица 1). Их защитное действие снижается в ряду: окситетрациклин>КАПБ>трициллин. Лишь окситетрациклин больше, чем в 10 раз, замедляет коррозию стали. Более существенную защиту стали обеспечивают композиции органических добавок в присутствии 0.01% NH₄NCS, который сам замедляет её коррозию в 11 раз. Близкое значение обеспечивает смесь 0.1% трициллина+0.01% NH₄NCS. Напротив, смеси 0.1% окситетрациклина+0.01% NH₄NCS и 0.1% КАПБ+0.01% NH₄NCS определяют существенно лучшие защитные эффекты в сравнении с 0.01% NH₄NCS. Из полученных экспериментальных данных следует, что исследуемые индивидуальные продукты малоперспективны для ингибиторной защиты стали в растворах $\rm H_2SO_4$. Перспективно дальнейшее изучение их смесей с NH₄NCS.

Увеличение содержания органического компонента в смесевых ингибиторах, содержащих 0.01% NH₄NCS, повышает их защитное действие при коррозии стали Ст3 (Таблица 2). Слабее всего этот эффект проявляется в присутствии трициллина, более существенен он для КАПБ и окситетрациклина. Наиболее сильная защита

* Международная единица — это единица измерения эффекта или биологической активности фармацевтического вещества, используемая для облегчения сравнения аналогичных форм веществ.

проявляется при содержании органических ингибиторов 0.1-0.2%, поэтому, дальнейшие исследования выполнялись для них.

Таблица 1. Влияние добавок 0.1% органических ингибиторов на коррозию стали Ст3 в 1 М H_2SO_4 и 1 М H_3PO_4 , t = 20°С. Продолжительность опытов -1 сут., k, $\Gamma/(M^2 \cdot \Psi)$.

Добавка	k, γ _	Органический ингибитор					
доолька	κ, γ —	_	Трициллин	Окситетрациклин	КАПБ		
1.00 M H ₂ SO ₄							
	k	13	8.5	1.1	1.6		
_	γ	_	1.5	12	8.1		
0.01% NH ₄ NCS	k	1.2	1.1	0.66	0.19		
0.01% INH4INCS	γ	11	12	20	68		
1.00 M H ₃ PO ₄							
_	k	9.0	2.8	2.0	1.2		
_	γ	_	3.2	4.5	7.5		
0.01% NH ₄ NCS	k	3.2	1.1	0.47	0.33		
0.01% NH4NCS	γ	2.8	8.2	19	27		

Таблица 2. Влияние содержания органического ингибитора на коррозию стали Ст3 в 1 М H_2SO_4 с добавкой 0.01% NH_4NCS , t = 20°C. Продолжительность опытов -1 сут., k, $\Gamma/(M^2 \cdot V)$.

Органический ингибитор	k, γ^* –	Содержание органического ингибитора					
органический ингионтор	κ, γ –	0.025%	0.05%	0.1%	0.2%		
Т	k	1.6	1.2	1.1	1.1		
Трициллин	γ	8.1	11	11	12		
	k	1.1	1.0	0.66	0.24		
Окситетрациклин	γ	12	13	20	54		
IC A TIT	k	0.25	0.20	0.19	0.18		
КАПБ	γ	52	65	68	72		

^{*}Скорость коррозии стали Ст3 в 1 М H_2SO_4 составляет 13 г/($M^2 \cdot H$).

Скорость коррозии стали Ст3 в растворе H_2SO_4 существенно зависит от ее содержания (Таблица 3). При переходе от 0.25 М H_2SO_4 к 2.00 М H_2SO_4 коррозия стали ускоряется в 4.8 раза. Напротив, в средах, ингибированных композициями, различия незначительны. Для всех ингибиторных композиций значение γ растет при

увеличении содержания в растворе кислоты. Следует отметить, что композиция 0.2% трициллина+0.01% NH₄NCS лишь в 1.00-2.00 М H₂SO₄ замедляет коррозии более чем в 10 раз. Для 0.2% окситетрациклина+0.01% NH₄NCS и 0.2% КАПБ+0.01% NH₄NCS высокое защитное действие проявляется во всем диапазоне концентраций H_2SO_4 .

Таблица 3. Влияние содержания кислоты на коррозию стали Ст3 в H_2SO_4 с добавкой смесевых ингибиторов, $t = 20^{\circ}$ С. Продолжительность опытов – 1 сут., k, $\Gamma/(M^2 \cdot \Psi)$.

Смесевой ингибитор		Содержание H ₂ SO ₄			
		0.25 M	0.50 M	1.00 M	2.00 M
_	k	4.2	6.8	13	20
0.20/ Tayyuyayyy 0.01 0/ NH NGS	k	1.3	1.2	1.1	1.4
0.2% Трициллин+0.01% NH ₄ NCS	γ	3.2	5.7	12	14
0.20/ Oversymmetry 0.010/ NH NGC	k	0.21	0.22	0.24	0.28
0.2% Окситетрациклин+0.01% NH ₄ NCS	γ	20	31	54	71
0.20/ MATIE 0.010/ NILL NICE	k	0.31	0.22	0.18	0.19
0.2% ΚΑΠБ+0.01% NH ₄ NCS	γ	14	31	72	110

Коррозия стали Ст3 в растворе $1.00~\mathrm{M}~\mathrm{H}_2\mathrm{SO}_4$ несколько замедляется во времени (Таблица 4). При этом удельная массопотеря металла ($\Delta m/S$) после 4 сут. экспозиции стальных образцов в растворе кислоты достигает существенных значений и превышает $1~\mathrm{kr/m^2}$. В случае исследуемых добавок эффективную защиту стали обеспечивают 0.2% окситетрациклин+0.01% NH₄NCS и 0.2% КАПБ+0.01% NH₄NCS. В их присутствии потеря массы металла за 7 сут. составляет $62~\mathrm{u}~35~\mathrm{r/m^2}$, соответственно. В случае добавки 0.2% трициллин+0.01% NH₄NCS эта величина – $375~\mathrm{r/m^2}$.

Коррозия стали Ст3 в 1.00 М H_2SO_4 ускоряется с ростом температуры (Таблица 5). Повышение t с 20 до 95°C увеличивает скорость коррозии в 72 раза. В присутствии смесевых добавок она ниже, хотя и растет с повышением t. В аналогичных условиях в присутствии 0.1% трициллина+0.01% N H_4NCS , 0.1% окситетрациклин+0.01% N H_4NCS и 0.1% КАПБ+0.01% N H_4NCS скорость коррозии возрастает в 380, 68 и 110 раз. Несмотря на это, при наличии в растворе кислоты 0.1% окситетрациклин+0.01% N H_4NCS и 0.1% КАПБ+0.01% N H_4NCS коррозия стали снижена в 25-58 и 13-66 раз. Наиболее интересный результат в горячих растворах 1.00 М H_2SO_4 демонстрирует смесь окситетрациклин $+NH_4NCS$. Максимальная k, наблюдаемая в ее присутствии при $t \le 80$ °C, составляет 11 г/(м $^2 \cdot$ ч), что является практически важным результатом. При этом, временный перегрев раствора кислоты до t = 95°C не приводит существенному ускорению коррозии, сохраняя ингибиторную защиту металла.

Таблица 4. Влияние времени экспонирования образцов в растворе кислоты на коррозию стали Ст3 в 1 М $_{2}SO_{4}$ и 1 М $_{3}PO_{4}$ с добавкой смесевых ингибиторов. t = 20°C, $\Delta m/S$, Γ/M^{2} ; k, $\Gamma/(M^{2} \cdot \Psi)$.

Смесевой ингибитор	$\Delta m/S$,	Bpe	Времени экспонирования образцов в растворе кислоты, сут			
	k, γ -	0.25	1	2	4	7
	1.00 M I	H ₂ SO ₄				
_	$\Delta m/S$	76	312	583	1100	1850
	k	13	13	12	11	11
	$\Delta m/S$	9.0	26	30	55	375
0.2% трицелин+0.01% NH ₄ NCS	k	1.5	1.1	0.63	0.57	2.2
	γ	8.7	12	19	19	5.0
	$\Delta m/S$	2.8	5.8	29	45	62
0.2% окситетрациклин+ $0.01%$ NH ₄ NCS	k	0.47	0.24	0.60	0.47	0.37
	γ	26	54	20	23	30
	$\Delta m/S$	3.8	4.3	15	21	35
0.2% KA Π E $+0.01\%$ NH $_4$ NCS	k	0.63	0.18	0.31	0.22	0.21
	γ	19	72	39	50	52
	1.00 M I	H ₃ PO ₄				
_	$\Delta m/S$	44	216	430	700	780
_	k	7.3	9.0	9.0	7.3	4.7
	$\Delta m/S$	7.8	26	44	50	59
0.1% трицелин $+0.01%$ NH ₄ NCS	k	1.3	1.1	0.92	0.52	0.35
	γ	5.6	8.2	9.8	14	13
	$\Delta m/S$	3.7	11	19	31	34
0.1% окситетрациклин $+0.01%$ NH ₄ NCS	k	0.61	0.47	0.40	0.32	0.20
	γ	12	19	23	23	24
	$\Delta m/S$	2.8	7.9	12	17	20
0.1% ΚΑΠБ+0.01% NH ₄ NCS	k	0.47	0.33	0.25	0.18	0.12
	γ	16	27	36	41	39

Таблица 5. Влияние температуры на коррозию стали Ст3 в 1 М H_2SO_4 и 1 М H_3PO_4 с добавкой смесевых ингибиторов. Продолжительность опытов -0.25 сут., k, $\Gamma/(M^2 \cdot \Psi)$.

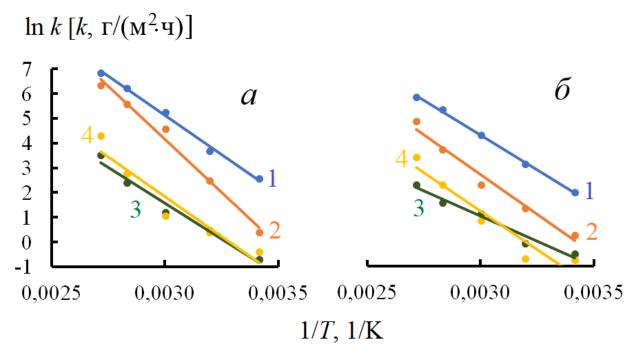

Смесевой ингибитор			Температура, °С			
		20	40	60	80	95
	1.00 M	H ₂ SO ₄				
_	k	13	40	190	510	940
0.10/ mayyyyyyy+0.010/ NH NCS	k	1.5	12	97	270	570
0.1% трицелин+0.01% NH ₄ NCS	γ	8.7	3.3	2.0	1.9	1.6
0.10/ everypermentary to 0.10/ NH NCS	k	0.50	1.6	3.3	11	34
0.1% окситетрациклин+0.01% NH ₄ NCS	γ	26	25	58	46	28
O 10/ ICATIF O 010/ NILL NCS	k	0.67	1.5	2.9	16	73
0.1% ΚΑΠБ+0.01% NH ₄ NCS	γ	19	27	66	32	13
1.00 M H ₃ PO ₄						
_	k	7.3	23	73	210	340
0.10/ mayyyayyy+0.010/ NH-NCS	k	1.3	3.8	9.8	41	130
0.1% трицелин+0.01% NH ₄ NCS	γ	5.6	6.1	7.4	5.1	2.6
0.10/	k	0.61	0.92	3.1	4.8	10
0.1% окситетрациклин+0.01% NH ₄ NCS	γ	12	25	24	44	34
0.1% КАПБ+0.01% NH ₄ NCS	k	0.47	0.50	2.3	9.9	30
U.1 % KAHD+U.UI % NH4NCS	γ	16	46	32	21	11

Таблица 6. Эффективные энергии активации коррозию стали Ст3 в 1 М H_2SO_4 и 1 М H_3PO_4 . Продолжительность опытов – 0.25 сут., E_{act} , кДж/моль.

Смесевой ингибитор	Коррозионная среда			
смесевой ингионтор	1.00 M H ₂ SO ₄	1.00 M H ₃ PO ₄		
_	53	47		
0.1% трицелин+0.01% NH ₄ NCS	72	54		
0.1% окситетрациклин $+0.01%$ NH ₄ NCS	48	34		
0.1% КАПБ+0.01% NH ₄ NCS	54	52		

Анализ зависимостей скорости коррозии стали Ст3 в 1 М H_2SO_4 от температуры представленных в координатах $\ln k - 1/T$ позволил рассчитать эффективные энергии активации (E_{act}) рассматриваемого процесса (Таблица 6, Рисунок 1). В фоновой 1.00 М

 ${
m H}_2{
m SO}_4$ она составила 53 кДж/моль. Добавки трициллина+NH4NCS существенно повышает значение $E_{
m act}$, что указывает на то, что в основе его ингибиторного действия лежит изменение им механизма коррозионного процесса. Добавка КАПБ+NH4NCS не изменяет $E_{
m act}$ коррозии, что является следствием преимущественно блокировочного действия смесевого ингибитора. Смесь окситетрациклин+NH4NCS снижает параметр $E_{
m act}$, смещая его к области значений характерных для процессов, протекающих с диффузионными контролем.

Рисунок 1. Зависимость логарифма скорости коррозии стали CT3 в 1.00 М H_2SO_4 (a) и 1.00 М H_3PO_4 (б) от обратной температуры. 1 – без добавок, 2 – 0.1% трициллин+0.01% NH₄NCS, 3 – 0.1% окситетрациклин+0.01% NH₄NCS, 4 – 0.1% KAПБ+0.01% NH₄NCS.

Таким образом, на основе окситетрациклина разработан высокоэффективный смесевой ингибитор, позволяющий защищать низкоуглеродистую сталь в растворах H_2SO_4 с широким диапазоном концентраций (C=0.25-2 М) и температур ($t=20-80^{\circ}$ C). Смесевой ингибитор окситетрациклин+NH₄NCS сопоставим в эффективности с аналогичным продуктом, созданным на основе промышленного ПАВ (КАПБ+NH₄NCS).

Фосфорная кислота

В 1.00 М Н₃РО₄ (20°С) индивидуальные добавки исследуемых продуктов слабо замедляют коррозию низкоуглеродистой стали (Таблица 1). Их защитное действие снижается в ряду: КАПБ>окситетрациклин>трициллин. Ни один из исследуемых индивидуальных продуктов не обеспечивает снижения скорости коррозии стали Ст3 в 10 раз. Более существенную защиту металла обеспечивают композиции

органических добавок в присутствии 0.01% NH₄NCS. Сам NH₄NCS замедляет коррозию стали в 2.8 раз. Смеси 0.1% трициллина+0.01% NH₄NCS, 0.1% окситетрациклина+0.01% NH₄NCS и 0.1% КАПБ+0.01% NH₄NCS обеспечивают существенно большие защитные эффекты в сравнении с 0.01% NH₄NCS. Самый низкий защитный эффект (γ =8.2) наблюдается для добавки 0.1% трициллина+0.01% NH₄NCS.

Коррозионные потери стали Ст3 в фоновой $1.00 \, M \, H_3 PO_4$, при длительных коррозионных испытаниях, существенно ниже, чем в $1.00 \, M \, H_2 SO_4$ (Таблица 4). Удельная массопотеря образцов метала после 4 суток воздействия раствора кислоты превышает $0.7 \, \kappa \Gamma/m^2$. В этих условиях достаточно эффективную защиту стали обеспечивают 0.1% окситетрациклина+0.01% NH₄NCS и 0.1% КАПБ+0.01% NH₄NCS. В их присутствии массопотеря образцов за 7 суток составляет 34 и $20 \, \Gamma/m^2$. В фоновой среде аналогичный показатель составляет $780 \, \Gamma/m^2$.

Добавки 0.1% окситетрациклина+0.01% NH₄NCS и 0.1% КАПБ+0.01% NH₄NCS эффективно замедляют коррозию стали Cт3 в 1.00 М H₃PO₄ с широким диапазоном температур (t=20–95°C) (Таблица 5). Интересный результат позволяет получить добавка 0.1% окситетрациклина+0.01% NH₄NCS, которая в исследованном диапазоне температур (t<95°C) обеспечивает максимальную скорость коррозии стали равную $10 \text{ г/(м}^2 \cdot \text{ч})$.

В фоновой 1.00 М H_3PO_4 рассчитанная E_{act} составляет 47 кДж/моль (Таблица 6, Рисунок 1). Добавки трициллин+N H_4 NCS и КАПБ+N H_4 NCS существенно повышают значение E_{act} . Можно предположить, что их ингибирующее действие связано с изменением механизма коррозионного процесса. Как и в растворе H_2SO_4 смесь окситетрациклин+N H_4 NCS снижает параметр E_{act} , смещая его к области значений характерных для процессов, протекающих с диффузионными контролем.

На основе доступного сырья – антибиотик группы тетрациклинов – разработан эффективный смесевой ингибитор коррозии низкоуглеродистых сталей в растворах H_2SO_4 и H_3PO_4 . Полученный результат важен с практической точки зрения, поскольку, помимо разработки нового ингибитора коррозии, появляется достаточно простой путь утилизации этого фармацевтического препарата в случае истечения его срока годности. Кроме этого, расширяется потенциальная сырьевая база для производства ингибиторов коррозии. Объем рынка тетрациклиновых препаратов на территории Российской Федерации достаточно обширный [36]. Они широко применяются в ветеринарии для лечения сельскохозяйственных животных [37].

Выводы

1. Разработан композиционный ингибитор окситетрациклин+NH₄NCS, способный обеспечить эффективную длительную защиту низкоуглеродистой стали в растворах H_2SO_4 с широким диапазоном концентрации кислоты (0.25-2.00 M) и температур $(20-80^{\circ}\text{C})$.

- 2. Смесь 0.1% окситетрациклин+0.01% NH₄NCS существенно замедляет коррозию низкоуглеродистой стали в 1.00 M H₃PO₄ при температурах до 95° C, обеспечивая $k \le 10 \, \Gamma/(M^2 \cdot \Psi)$.
- 3. Композиция окситетрациклин+NH₄NCS сопоставима по эффективности ингибирования коррозии низкоуглеродистой стали в растворах H_2SO_4 и H_3PO_4 с аналогичным смесевым ингибитором, созданным на основе промышленного ΠAB кокамидопропил бетаина.

Финансирование

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации.

Список литературы

- 1. Ya.G. Avdeev, Inhibitory protection of metals in acid solutions by pharmaceuticals. A critical review, *Int. J. Corros. Scale Inhib.*, 2024, **13**, no. 4, 2543–2569. doi: 10.17675/2305-6894-2024-13-4-35
- 2. G. Gece, Drugs: A review of promising novel corrosion inhibitors, *Corros. Sci.*, 2011, **53**, 3873–3898. doi: 10.1016/j.corsci.2011.08.006
- 3. R.K. Pathak and P. Mishra, Drugs as Corrosion Inhibitors: A Review, *International Journal of Science and Research*, 2016, **5**, no. 4, 671–677.
- 4. S. Tanwer and S.K. Shukla, Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A review, *Current Res. Green Sustainable Chem.*, 2022, 5, 100227. doi: 10.1016/j.crgsc.2021.100227
- 5. L.T. Popoola, Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors, *Heliyon*, 2019, **5**, e01143. doi: 10.1016/j.heliyon.2019.e01143
- S. Sharma, R. Ganjoo, S. Kumar and A. Kumar, Evaluation of Drugs as Corrosion Inhibitors for Metals: A Brief Review, *Advances in Chemical, Bio and Environmental Engineering. CHEMBIOEN 2021. Environmental Science and Engineering*, Springer, Cham. Eds. J.K. Ratan, D. Sahu, N.N. Pandhare, A. Bhavanam, 2022. doi: 10.1007/978-3-030-96554-9_71
- 7. N. Vaszilcsin, A. Kellenberger, M.L. Dan, D.A. Duca and V.L. Ordodi, Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review, *Materials*, 2023, **16**, 5555. doi: 10.3390/ma16165555
- 8. C. Verma, M.A. Quraishi and K.Y. Rhee, Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors, *J. Mol. Liq.*, 2021, **328**, 115395. doi: 10.1016/j.molliq.2021.115395
- 9. M.A. Quraishi and D.S. Chauhan, Drugs as Environmentally Sustainable Corrosion Inhibitors, *ACS Symposium Series*, 2021, **1404**, 1–17. doi: 10.1021/bk-2021-1404.ch001
- 10. S. Sharma and A. Kumar, Recent advances in metallic corrosion inhibition: A review, *J. Mol. Liq.*, 2021, **322**, 114862. doi: 10.1016/j.molliq.2020.114862

- 11. R.C. Nduma, O.S.I. Fayomi, M.O. Nkiko, A.O. Inegbenebor, N.E. Udoye, O. Onyisi, O. Sanni and J. Fayomi, Review of metal protection techniques and application of drugs as corrosion inhibitors on metals, *IOP Conf. Ser.: Mater. Sci. Eng.*, 2021, **1107**, 012023. doi: 10.1088/1757-899X/1107/1/012023
- 12. C. Verma, D.S. Chauhan and M.A. Quraishi, Drugs as environmentally benign corrosion inhibitors for ferrous and nonferrous materials in acid environment: An overview, *JMES*, 2017, **8**, no. 11, 4040–4051.
- 13. M.J. Baari and C.W. Sabandar, A Review on Expired Drug-Based Corrosion Inhibitors: Chemical Composition, Structural Effects, Inhibition Mechanism, Current Challenges, and Future Prospects, *Indones. J. Chem.*, 2021, **21**, no. 5, 1316–1336. doi: 10.22146/ijc.64048
- 14. C.N. Njoku, B.N. Enendu, S.J. Okechukwu, N. Igboko, S.O. Anyikwa, A.I. Ikeuba, I.B. Onyeachu, I.-I.N. Etim and D.I. Njoku, Review on anti-corrosion properties of expired antihypertensive drugs as benign corrosion inhibitors for metallic materials in various environments, *Results in Engineering*, 2023, **18**, 101183. doi: 10.1016/j.rineng.2023.101183
- 15. G.K. Shamnamol, K.P. Sreelakshmi, G. Ajith and J.M. Jacob, Effective utilization of drugs as green corrosion inhibitor A review, *AIP Conf. Proc.*, 2020, **2225**, 070006. doi: 10.1063/5.0005931
- 16. A.M. El-Shamy and S.M. Mouneir, Medicinal Materials as Eco-friendly Corrosion Inhibitors for Industrial Applications: A Review, *J. Bio. Tribo. Corros.*, 2023, **9**, 3. doi: 10.1007/s40735-022-00714-9
- 17. M.A.I. Al-Hamid, S.B. Al-Baghdadi, T.S. Gaaz, A.A. Khadom, E. Yousif and A. Alamiery, Green chemistry solutions: Harnessing pharmaceuticals as environmentally friendly corrosion inhibitors: A review, *Int. J. Corros. Scale Inhib.*, 2024, **13**, no. 2, 630–670. doi: 10.17675/2305-6894-2024-13-2-1
- 18. S.R. Al-Mhyaw, Application of expired Tramadol medicinal drug for corrosion inhibition of steel in acidic environment: Analytical, kinetic, and thermodynamic studies, *Int. J. Corros. Scale Inhib.*, 2022, **11**, no. 3, 1282–1302. doi: 10.17675/2305-6894-2022-11-3-22
- 19. Ya.G. Avdeev and Yu.I. Kuznetsov, Acid corrosion of metals and its inhibition. A critical review of the current problem state, *Int. J. Corros. Scale Inhib.*, 2022, **11**, no. 1, 111–141. doi: 10.17675/2305-6894-2022-11-1-6
- 20. М.В. Тюрина, Е.Н. Юрасова, Я.Г. Авдеев и Ю.И. Кузнецов, Защита низкоуглеродистой стали в растворах минеральных кислот медицинскими препаратами трифенилметанового ряда, *Коррозия: материалы, защита*, 2017, № 9, 37—46.

- 21. Y. Liang, C. Wang, J.S. Li, L.J. Wang and J.J. Fu, The Penicillin Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Experimental and Theoretical Studies, *Int. J. Electrochem. Sci.*, 2015, **10**, no. 10, 8072–8086. doi: 10.1016/S1452-3981(23)11077-7
- 22. S.B. Uakkaz, R. Zerdoumi, K. Oulmi, D. Mellahi and G.M. Andreadis, Electrochemical Study of Penicillin-G as a Corrosion Inhibitor for Fe-19Cr Stainless Steel in Hydrochloric Acid, *Port. Electrochim. Acta*, 2017, **35**, no. 4, 211–224. doi: 10.4152/pea.201704211
- 23. S.K. Shukla, A.K. Singh, I. Ahamad and M.A. Quraishi, Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution, *Materials Letters*, 2009, **63**, nos. 9–10, 819–822. doi: 10.1016/j.matlet.2009.01.020
- 24. Y. Li, R. Miao, Y. Li, X. Peng and L. Niu, Corrosion inhibition of two tetracycline-based expired antibiotics as eco-friendly inhibitors for mild steel in 1M HCl solution, *Materials and Corrosion*, 2024. doi: 10.1002/maco.202314030
- 25. Ya.G. Avdeev and Yu.I. Kuznetsov, Inhibitory protection of steels from high-temperature corrosion in acid solutions. A review. Part 1, *Int. J. Corros. Scale Inhib.*, 2020, **9**, no. 2, 394–426. doi: 10.17675/2305-6894-2020-9-2-2
- 26. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, *Int. J. Corros. Scale Inhib.*, 2020, **9**, no. 4, 1261–1276. doi: 10.17675/2305-6894-2020-9-4-5
- 27. A. Ouarga, T. Zirari, S. Fashu, M. Lahcini, H. Ben Youcef and V. Trabadelo, Corrosion of iron and nickel based alloys in sulphuric acid: Challenges and prevention strategies, *J. Mater. Res. Technol.*, 2023, **26**, 5105–5125. doi: 10.1016/j.jmrt.2023.08.198
- 28. G. Pracht and N. Perschnick, A Material Challenge Pumps in Sulphuric Acid Application, *Procedia Engineering*, 2016, **138**, 421–426. doi: 10.1016/j.proeng.2016.02.101
- 29. J.A. Richardson, 2.23 Corrosion in Sulfuric Acid, in *Shreir's Corrosion*, Eds. S. Lyon, T. Richardson, B. Cottis, R. Lindsay, D. Scantlebury, H. Stott, M. Graham, Elsevier, 2010, 1226–1249. dio: 10.1016/B978-044452787-5.00180-3
- 30. J.A. Richardson and A.A. Abdullahi, Corrosion in Sulfuric Acid, in *Reference Module in Materials Science and Materials Engineering*, Elsevier, 2017, 24 p. doi: 10.1016/B978-0-12-803581-8.10517-X
- 31. Ya.G. Avdeev, Protection of metals in phosphoric acid solutions by corrosion inhibitors. A review, *Int. J. Corros. Scale Inhib.*, 2019, **8**, no. 4, 760–798. doi: 10.17675/2305-6894-2019-8-4-1
- 32. Ya.G. Avdeev, M.V. Tyurina and Yu.I. Kuznetsov, Protection of low-carbon steel in phosphoric acid solutions by mixtures of a substituted triazole with sulfur-containing compounds, *Int. J. Corros. Scale Inhib.*, 2014, **3**, no. 4, 246–253. doi: 10.17675/2305-6894-2014-3-4-246-253

- 33. Ya.G. Avdeev, A.V. Panova, V.V. Al'brandt, K.L. Anfilov, A.G. Berezhnaya and T.A. Vagramyan, Inhibitory protection of low-carbon steel in solutions of hydrochloric, sulfuric, and phosphoric acids, *Int. J. Corros. Scale Inhib.*, 2024, **13**, no. 1, 508–525. doi: 10.17675/2305-6894-2024-13-1-25
- 34. В.П. Григорьев и В.В. Богинская, Кислотная коррозия железа в присутствии смесей анионных добавок и соединений реакционного ряда производных ооксиазометина с нуклеофильными заместителями, *Защита металлов*, 2006, **42**, № 6, 627–631.
- 35. Ya.G. Avdeev, T.E. Andreeva and K.L. Anfilov, Effect of some organic surfactants on the corrosion behavior of low-carbon steel in hydrochloric acid solution, *Int. J. Corros. Scale Inhib.*, 2023, **12**, no. 3, 1052–1064. doi: 10.17675/2305-6894-2023-12-3-15
- 36. А.А. Халимова, Обзор рынка антибиотиков и оценка перспектив его развития, *Medical & pharmaceutical journal «Pulse»*, 2023, **25**, № 2, 77–83. doi: 10.26787/nydha-2686-6838-2023-25-2-77-83
- 37. М.С. Мирошникова, Тетрациклиновые антибиотики в животноводстве и ветеринарии, *Шаг в науку*, 2021, № 2. 10–20.

Protection of steel in acid solutions by an oxytetracycline-based inhibitor

Ya.G. Avdeev,^{1,*} K.L. Anfilov² and T.E. Andreeva¹

¹A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, 31-4, Leninsky prospect, 119071 Moscow, Russia

²Federal State Autonomous Educational Institution of Higher Education «Bauman Moscow State Technical University», Basmanniy municipal district, 2-ya Baumanskaya Street, 5-1, 105005 Moscow, Russia

*E-mail: <u>avdeevavdeev@mail.ru</u>

Abstract

An effective inhibitor of corrosion of St3 steel in solutions of sulfuric and phosphoric acids has been developed based on the pharmaceutical drug for veterinary purposes – oxytetracycline. It has been established that in individual form this pharmaceutical preparation does not provide significant protection of steel in the studied environments. Its use in the form of a two-component mixture with NH₄NCS is more promising. A composite inhibitor of 0.1-0.2% oxytetracycline+0.01% NH₄NCS has been proposed, which is capable of providing effective long-term protection of steel in H₂SO₄ solutions with a wide range of acid concentrations (0.25-2.00 M) and temperatures $t=20-80^{\circ}\text{C}$. This mixture significantly slows down corrosion of low-carbon steel in 1.00 M H₃PO₄ at temperatures up to 95°C . The developed composition is no worse in its effectiveness in inhibiting steel corrosion in H₂SO₄ and H₃PO₄ solutions in comparison with similar mixed inhibitors created on the basis of an industrial surfactant – cocamidopropyl betaine and a veterinary drug – tricillin.

Keywords: acid corrosion, corrosion inhibitors, pharmaceuticals, low-carbon steel, sulfuric acid, phosphoric acid, oxytetracycline.