УДК 620.197.3

Модификация поверхности магния в растворах органических ингибиторов коррозии послойным методом

В.А. Лучкина,* Д.Б. Вершок и А.А. Чиркунов

ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр., д. 31/4, 119071, Москва, Россия E-mail: masildik@mail.ru

Аннотация

В настоящей работе, исследована возможность повышения коррозионной стойкости Mr90 методом послойной модификации его поверхности в растворах 13 мМ олеата натрия и 3 мМ 8-гидроксихинолина. Оценено влияние, как последовательности нанесения ингибиторов, так и толщины оксидно-гидроксидного подслоя. Показано, что покрытие 13 мМ олеата натрия // 3 мМ 8-гидрокихинолина, сформированное на воздушно-окисленном Mr90, обеспечивало наиболее эффективную защиту металла от коррозии, чем их индивидуальные слои. Увеличение толщины оксидного подслоя не способствовало повышению защитного действия полислойных покрытий, однако существенно повышало коррозионную стойкость Mr90 с пленками индивидуальных ингибиторов.

Ключевые слова: магний, ингибиторы коррозии, олеат натрия, 8-гидроксихинолин, послойное нанесение

Поступила в редакцию 14.09.2023 г.; После доработки 14.09.2023 г.; Принята к публикации 14.09.2023 г.

Введение

Магниевые сплавы находят широкое применение в промышленности и в качестве объекта исследования при разработке перспективных материалов для различных областей науки и техники [1, 2]. Основные преимущества магния и его сплавов заключаются в сочетании низкой плотности с хорошими механическими характеристиками и биосовместимостью, что позволяет использовать его как автомобильной конструкционный материал В И авиакосмической промышленности, при создании корпусов электронных устройств, а также в качестве материала для имплантов в хирургии. В то же время, высокая химическая и электрохимическая активность магния является причиной низкой коррозионной стойкости его сплавов и может существенно уменьшать время эксплуатации изделий. В настоящее время известны различные способы защиты, в основном связанные с получением на поверхности магниевых сплавов различных покрытий [3], однако проблемы повышения их эффективности, технологичности и экологической безопасности остаются актуальными.

Применение нетоксичных органических ингибиторов коррозии (ИК) является одним из способов повышения коррозионной стойкости Ме и сплавов. Обычно ИК вводят в коррозионную среду в определенной концентрации, однако они могут быть использованы и для создания на поверхности металлов тонких пленок, которые впоследствии защищают металл, например, в атмосферных условиях [4], а также для повышения эффективности других средств противокоррозионной защиты, в частности, различных типов покрытий [5, 6]. В качестве ИК могут использоваться индивидуальные соединения, однако более перспективно применение органических ИК в композициях с другими органическими [7–9] или неорганическими [10–12] соединениями, поскольку в этом случае возможно взаимное усиление их эффективности.

Другим способом повышения эффективности действия ИК является использование технологии послойной модификации поверхности или "layer-bylayer" в растворах ИК. Популярность этого метода обусловлена возможностью многофункционального покрытия. Подобрав соответствующие модификаторы, можно сформировать системы покрытий способные повысить коррозионную антибактериальную стойкость. обеспечить биосовместимость, а в ряде случаев и придать покрытию способность к самозалечиванию. Возможность сочетать несколько функций особенно актуальна для биомедицинских применений сплавов Мд [13]. К достоинствам этого метода можно отнести и бездефектность покрытий, что положительно сказывается на коррозионной стойкости сплавов Mg.

Самым простым и традиционным методом обработки при формировании полислойных покрытий является погружной метод [13–16] однако, известны и другие способы, такие как центрифугирование [13, 17, 18] и распыление [13]. Каждый, из них имеет свои достоинства и недостатки, подробно описанные в обзоре [13].

В качестве модифицирующих растворов в технологии "layer-by-layer" часто используют полиэлектролиты [13, 17, 19]. Однако существует ряд работ, в которых для формирования одного или нескольких слоев покрытия используются такие известные ИК как 8-гидроксихинолин (8-ГОХ) [18], фитиновая кислота [16, 20] или алкоксисиланы [14, 15, 19].

В связи с вышеизложенным, представляет интерес исследовать возможность повысить эффективность защитного последействия пленок известного ИК олета натрия (ОлН) при его послойной адсорбции с 8-ГОХ на Мг90.

Методика эксперимента

Исследования проводили на образцах первичного магния марки Мг90 (ГОСТ 804-93), состав которого указан в таблице 1.

В работе [9] было показано, что защитное последействие пленок исследованных ИК имело тенденцию возрастать по мере увеличения толщины оксидно-гидроксидной пленки. В связи с этим в настоящей работе для послойной модификации использовались 3 типа образцов и электродов Мг90:

- 1.С воздушно-образованной оксидно-гидроксидной пленкой (ВО);
- 2.С оксидно-гидроксидной пленкой, образованной в процессе 10-минутного щелочно-фосфатного обезжиривания (Фос) в растворе 45 г/л NaOH и 10 г/л Na₃PO₄·12H₂O [9] при 60°C. Обезжиренные образцы промывали дистиллированной водой и 60 мин сушили на воздухе ($t_{\text{сушки}} = 20$ °C);
- 3.С оксидно-гидроксидной пленкой (Окс), химически образованной в 5 М NaOH. Для этого образцы Mr90 выдерживали в растворе щелочи в течение 90 мин, после промывали дистиллированной водой и сушили 60 мин на воздухе (Окс).

Таблица 1. Химический состав Мг90 (в мас. %).

Элемент	Mg	Fe	Si	Ni	Cu	Al	Mn	Zn	Pb	Sn
Содержание	99,95	0,003	0,004	0,001	0,003	0,01	0,01	0,01	0,005	0,005

Пластины и электроды Мг90 с оксидно-гидроксидным слоем, сформированным одним из вышеуказанных способов, подвергали послойной модификации в растворах 13 мМ ОлН и 3 мМ 8-ГОХ. Пленку ИК формировали при комнатной температуре в течение 10 мин. После каждой операции нанесения ИК следовала 60 минутная сушка на воздухе ($t_{\text{сушки}} = 20$ °C). Защитное последействие было исследовано не только для полислойных покрытий, но и для слоев индивидуальных ИК, и смесевой композиции ОлН с 8-ГОХ (Таблица 2).

Таблица 2. Составы пассивирующих растворов и параметры обработки

№, п/п	Обработка	рН		
1	13 мМ ОлН	8,51		
2	3 мМ 8-ГОХ	7,0		
3	13 мМ Ол $H + 3$ мМ $8-\Gamma OX^1$	8,05		
4	13 мМ ОлН// 3 мМ 8- Γ ОХ 2	8,51 // 7,0		
5	3 мМ 8- Γ ОХ // 13 мМ ОлН	7,0 // 8,51		

Защитное действие сформированных пленок оценивали посредством снятия анодных поляризационных кривых, методом спектроскопии электрохимического импеданса (СЭИ) и прямых коррозионных испытаний при периодической конденсации влаги. Во всех электрохимических исследованиях рабочим раствором служил боратный раствор рН 9.2 с добавлением 1 мМ NaCl и естественной аэрацией.

Анодные поляризационные кривые снимали в стеклянной трехэлектродной ячейке с разделенными пространствами с помощью потенциостата IPC-Pro MF

 $^{^{1}}$ «+» — смесевая композиция

 $^{^2}$ «//» — послойное нанесение

 $(P\Phi)$. Потенциалы (E) Мг90 измеряли относительно хлорсеребряного электрода сравнения, пересчитывали на стандартную водородную шкалу. Вспомогательный электрод — Pt. Обработанные образцы опускали в ячейку и сразу, т.е. с начального потенциала $(E_{\rm H})$ начинали анодную поляризацию.

Измерения СЭИ проводили в стеклянной трехэлектродной ячейке с разделенным пространством с помощью электрохимического комплекса "Solartron Schlumberger" (United Kingdom), состоящий из потенциостата 1286 и анализатора частотного отклика FRA 1250. Спектры электрохимического импеданса получали в диапазоне частот ω от 60 кГц до 0,1 Гц при амплитуде переменного напряжения 10 мВ. Рабочий и вспомогательный электроды располагали в электрохимической ячейке коаксиально. Площадь рабочего электрода составляла 0.72 см². Вспомогательным электродом служила платиновая сетка площадью 20 см². Потенциалы электрода измеряли относительно хлоридсеребряного электрода.

Мд электрод выдерживали в боратном буфере 15 мин при потенциале свободной коррозии. Установившееся в течение этого времени значение E фиксировали, включали ячейку и снимали спектр. Полученные результаты обрабатывали с помощью программы ZView.

Расчет параметров электрохимического импеданса Mg рабочем растворе осуществляли, покрытием используя эквивалентную (**ЭЭ**C) Мансфельда (Рисунок 1). электрическую схему Она включает: сопротивление объёмного электролита между вспомогательным и рабочим сопротивление электродами $R_{\rm s}$ поверхностных оксидно-гидроксидных и адсорбционных — $R_{\rm f}$, поляризационное сопротивление, характеризующее электрохимическую кинетику коррозионного процесса — $R_{\rm t}$, элемент постоянной фазы, характеризующий емкость поверхностных слоев и/или адсорбционной плёнки — $Q_{\rm f}$, а также емкость двойного электрического слоя в дефектах плёнки, выраженная в виде элемента постоянной фазы — $Q_{\rm dl}$.

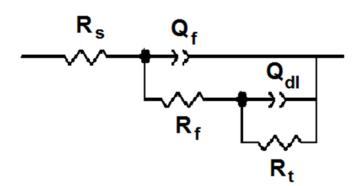


Рисунок 1. Эквивалентная электрическая схема

Степень защиты магниевого электрода вычисляли по формуле 2.

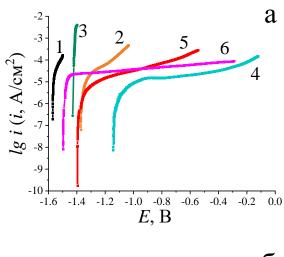
$$Z = \frac{R^{\text{ИК}} - R^{\phi_{\text{OH}}}}{R^{\text{ИK}}} \times 100 \tag{2},$$

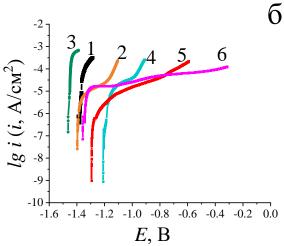
где $R^{\phi o H}$ и $R^{\rm UK}$ — общее сопротивление межфазного взаимодействия металл –

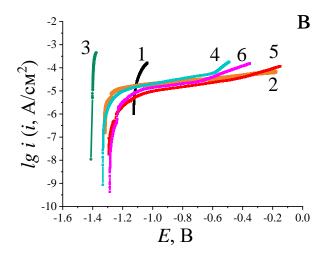
электролит, включающее $R_{\rm f}$ и $R_{\rm dl}$, Mg электрода с оксидно-гидроксидным слоем, до и после модификации в растворах ИК, соответственно.

Результаты расчета ЭЭС, *R* и *Z* представлены в таблице 3.

Коррозионные испытания проводили при периодической конденсации влаги на прямоугольных образцах $20\times30\times5$ мм. Подготовленные образцы подвешивали в стеклянных ячейках над 40-50 мл дистиллированной воды при $t=40-50^{\circ}$ С. Ячейки с образцами помешали в сушильный шкаф, в котором в течение 8 ч поддерживалась $t=40\pm2^{\circ}$ С, затем нагрев отключали, обеспечивая, таким образом, конденсацию влаги на поверхности образцов. Образцы осматривали ежечасно, фиксируя время появления первых коррозионных поражений.


Экспериментальные результаты и их обсуждение


Ранее в [8] было показано, что на Мг90 с воздушно-образованным оксидом среди исследованных смесевых ИК наиболее эффективной композицией является 13 мМ ОлН + 3 мМ 8-ГОХ. Поэтому в данной работе было исследовано защитное последействие 13 мМ ОлН и 3 мМ 8-ГОХ при их послойном нанесении на поверхность Мg. Для того чтобы оценить наличие или отсутствие преимущества послойной модификации были также получены соответствующие данные для слоев отдельных ИК.


На рисунке 2a видно, что значения $E_{\rm H}$ для образцов Mr90 со всеми исследованными покрытиями в той или иной степени смещены в анодную сторону относительно фонового значения. Хотя на анодных поляризационных кривых не наблюдалось полного подавления анодного растворения Мg, обработка в растворе смесевой композиции ОлН с 8-ГОХ способствовала наибольшему смещению потенциала электрода в анодную сторону (на 428 мВ относительно фона). Не смотря на меньшие значения ΔE по сравнению со смесью, послойная тормозит анодный процесс, модификация лучше чем индивидуальные адсорбционные слои 13 мМ ОлН и 3 мМ 8-ГОХ. При этом последовательность нанесения слоев играет большую роль. Так если Мг90 выдержать сначала 10 мин в растворе хелатореагента, а затем в растворе карбоксилата, то на $\Delta E_{\rm H}$ такого электрода меньше (Рисунок 2а), и плотность тока на начальном участке выше, чем у обработки 13 мМ ОлН//3 мМ 8-ГОХ. При обработке сначала в 13 мМ ОлН а затем 3 мМ 8-ГОХ $E_{\rm H}$ меньше смещен в анодную сторону, чем в случае 13 мМ ОлН (на 175 и 200 мВ соответственно), но в большей степени замедляется анодное растворение. Более электроотрицательное значение $E_{\scriptscriptstyle \rm H}$ при послойной обработке может быть обусловлено частичным растворением слоя карбоксилата в процессе нанесения хелатореагента.

Спектры СЭИ электрода Мг90 приведены на рисунке 3а. Он представляет собой вытянутую вдоль оси абсцисс полуокружность с центром ниже оси и хорошо описывается модифицированной эквивалентной схемой Мансфельда с двумя постоянными времени. Высокочастотный полукруг на годографе в выбранной модели соответствует постоянной времени, в основном связанной со схемой $R_{\rm f}/Q_{\rm f}$, т. е. зависит от проводимости поверхностного слоя. Низкочастотная

дуга годографа связана с кинетикой Фарадеевских процессов на металле, которая фактически определяет коррозионное поведение магния. Параметры этого полукруга описываются схемой $R_{\rm t}/Q_{\rm dl}$ как часть общей эквивалентной схемы.

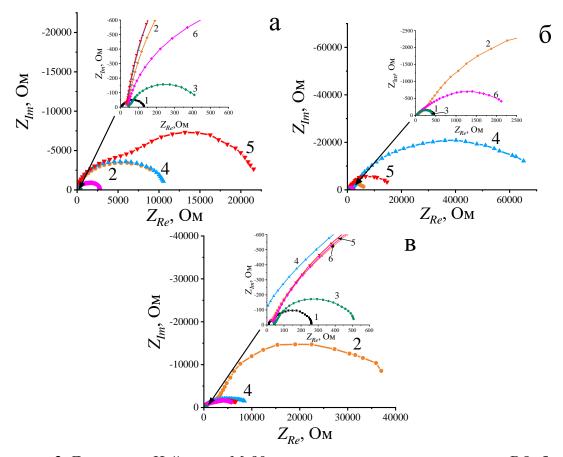


Рисунок 2. Анодные поляризационные кривые Mr90 с оксидно-гидроксидным слоем \mathbf{a} -BO, $\mathbf{6}$ -Фос, \mathbf{b} -Окс, в боратном буфере с pH 9,2, содержащем 1 мM NaCl, без-1 и после 10 мин пассивации в растворах ИК: 2-13 мМ ОлH; 3-3 мМ 8-ГОХ; 4-13 мМ ОлH + 3 мМ 8-ГОХ; 5-13 мМ ОлH // 3 мМ 8-ГОХ; 6-3 мМ 8-ГОХ // 13 мМ ОлH.

Адсорбция ИК во всех случаях приводила к увеличению радиуса годографа, а более четкому послойной модификации, К проявлению полуокружностей. Вероятно, это связано с изменением электрических свойств поверхностных пленок. Увеличение радиуса годографа свидетельствует о росте коррозионной стойкости. Анализ величин $n_{\rm f}$ (Таблица 3) свидетельствует об ингибиторных пленок, относительной однородности Фарадеевских процессах в двойном слое, не осложненных диффузией. Адсорбция ИК приводила во всех случаях, кроме 3 мМ 8-ГОХ, к увеличению величин сопротивления поверхностных пленок, отвечающих за перенос катионов и анионов, участвующих в коррозионных процессах. Также, модификация в растворах ИК приводила к значительному росту $R_{\rm t}$, тем самым влияя на кинетику электродных процессов. При этом величины $Q_{
m dl}$ были меньше, чем на фоновом образце, что объясняется уменьшением площади электрохимически активной поверхности после адсорбции ИК. Максимальное защитное действие проявляла пленка, послойно сформированная сначала в растворе 13 мМ ОлН, а затем в 3 мМ 8-ГОХ. Степень защиты (Z) при такой обработке достигала 99,58 %.

Рисунок 3. Диаграммы Найквиста Мг90 с оксидно-гидроксидным слоем **a**—BO, **б**—Фос, **b**—Окс, в боратном буфере с рН 9,2, содержащем 1 мМ NaCl, без—1 и после 10 мин пассивации в растворах ИК: **2**—13 мМ ОлН; **3**—3 мМ 8-ГОХ; **4**—13 мМ ОлН \times 3 мМ 8-ГОХ; **5**—13 мМ ОлН \times 3 мМ 8-ГОХ; **6**—3 мМ 8-ГОХ \times 13 мМ ОлН.

Таблица 3. Рассчитанные номиналы электродов Мг90 в боратном буфере, содержащем 1 мМ NaCl при рН 9,2, без и с пленками ИК.

ИК и параметры обработки	Q_{f} , $\mu S \cdot s^{n}/cm^{2}$	n_f	R_f , Om·cm ²	Q_{dl} , $\mu S \cdot s^{n}/cm^{2}$	n_{dl}	Rt, Om·cm ²	$R = R_f + R_t,$ $Om \cdot cm^2$	Z, % ³	Z_f , %
				ВО					
отсутствует	3,21	0,89	16,21	50,83	0,85	112,14	128,35	_	_
13 мМ ОлН	1,60	0,89	6025,42	13,77	0,73	4918,74	10944,16	98,83	98,83
3 мМ 8-ГОХ	7,36	0,90	30,03	27,23	0,84	408,87	438,90	70,76	70,76
13 мМ ОлН+3 мМ 8-ГОХ	2,14	0,91	7317,05	28,00	0,78	11111,1	18428,15	99,30	99,30
13 мМ ОлН // 3 мМ 8-ГОХ	1,38	0,92	7390,2	12,48	0,80	23052,6	30442,80	99,58	99,58
3 мМ 8-ГОХ // 13 мМ ОлН	3,98	0,87	1903,8	16,22	1,00	2756,4	4660,20	97,25	97,25
Фос									
отсутствует	5,57	0,65	35,26	38,54	0,81	436,24	471,50	72,78	-
13 мМ ОлН	16,36	0,66	312,62	14,94	0,80	6904,59	7217,21	98,22	93,47
3 мМ 8-ГОХ	22,17	0,79	47,16	12,93	0,92	351,6	398,76	67,81	-18,24
13 мМ ОлН+3 мМ 8-ГОХ	11,88	0,57	5647,34	3,29	0,91	71656,52	77303,86	99,83	99,39
13 мМ ОлН // 3 мМ 8-ГОХ	11,70	0,68	1739,07	6,61	0,91	15479,49	17218,56	99,25	97,26
3 мМ 8-ГОХ // 13 мМ ОлН	27,28	0,59	622,05	7,03	0,75	2000,7	2622,75	95,11	82,02
Окс									
отсутствует	2,72	0,95	45,513	41,23	0,85	207,87	253,38	49,34	_
13 мМ ОлН	5,14	0,74	2225,30	21,43	0,72	15548,4	17773,70	99,28	98,57
3 мМ 8-ГОХ	9,00	0,54	48,99	48,99	0,82	518,98	567,97	77,40	55,39
13 мМ ОлН+3 мМ 8-ГОХ	7,93	0,69	2460,00	2460,00	0,62	5805,6	8265,60	98,45	96,93
13 мМ ОлН // 3 мМ 8-ГОХ	4,27	0,76	5220,12	5220,12	0,63	5235,7	10455,82	98,77	97,58
3 мМ 8-ГОХ // 13 мМ ОлН	6,79	0,74	2942,94	2942,94	0,65	4024,02	6966,96	98,16	96,36

 $^{^{3}}Z$ — степень защиты относительно воздушно-окисленной поверхности $^{4}Z_{f}$ — степень защиты относительно своего типа подготовки поверхности, для воздушно-окисленной $Z_f = Z$

В процессе 10 минутной обработки Mg в водном растворе 3 мМ 8-ГОХ на его поверхности формируется неравномерное покрытие. При визуальном осмотре пластин видны зеленые участки. Если подобные образцы все же поместить во влажную атмосферу, то первые коррозионные поражения (2 ч, Таблица 4) образуются в областях, где отсутствовал зеленый налет. Нанесение поверх пленки хелатореагента ОлН не повышало коррозионной стойкости Мг90. Если же пластины Mg с оксидом, сформированным на воздухе сначала обработать в 13 мМ ОлН, а после промежуточной сушки в 3 мМ 8-ГОХ, то зеленый налет отсутствовал. Через 16–19 ч испытаний во влажной атмосфере образцы с таким покрытием начинали равномерно темнеть, однако первые точки были обнаружены только через 208 ч (Таблица 4). Такое изменение внешнего вида поверхности может быть обусловлено как равномерной коррозией, так и дальнейшими преобразованиями в пленке из-за наличия в ее составе 8-ГОХ.

Таблица 4. Результаты коррозионных испытаний образцов Mr90 в условиях 100%-й относительной влажности воздуха и периодической конденсации влаги, без и с пленками ИК.

№, п/п	ИК и параметры обработки	Время появления первых поражений τ, ч			
	ВО				
1	отсутствует	0,5-1,0			
2	13 мМ ОлН	24,5			
3	3 мМ 8-ГОХ	2,0			
4	13 мМ ОлH + 3 мМ 8-ГОХ	39,0			
5	13 мМ ОлН// 3 мМ 8-ГОХ	208,0			
6	3 мМ 8- Γ ОХ // 13 мМ ОлН	1,5			
	Фос				
7	отсутствует	23,0			
8	13 мМ ОлН	44,0			
9	3 мМ 8-ГОХ	41,0			
10	13 мМ ОлH + 3 мМ 8-ГОХ	31,0			
11	13 мМ ОлН// 3 мМ 8-ГОХ	217,0			
12	3 мМ 8- Γ ОХ // 13 мМ ОлН	41,0			
	Окс				
13	отсутствует	17,0-20,0			
14	13 мМ ОлН	91,0			
15	3 мМ 8-ГОХ	118,0			
16	13 мМ ОлH + 3 мМ 8-ГОХ	46,0			
17	13 мМ ОлН // 3 мМ 8-ГОХ	192,0			
18	3 мМ 8-ГОХ // 13 мМ ОлН	48,0			

На рисунке 26 видно, что $E_{\rm H}$ химически обезжиренного в щелочно-фосфатном растворе Мг90, после 10 мин выдержки в растворе 3 мМ 8-ГОХ смещен в катодную сторону относительно соответствующего фона. Это может свидетельствовать о частичном растворении оксидно-гидроксидного слоя в процессе обработки (Рисунок 26). Защитное последействие адсорбционной

пленки ОлН немного возрастало с увеличением толщины $Mg(OH)_2$. Это проявляется внешнего вида анодной поляризационной кривой Mg-электрода с пленкой этого ИК. Увеличение толщины подслоя оксида до 13 нм [9] оказывает благоприятное влияние и на послойную модификацию. Так химически обезжиренный Mr90 с полислойными покрытиями 3 мМ 8- Γ OX//13 мМ ОлН и 13 мМ ОлН//3 мМ 8- Γ OX имеет более электроположительные $E_{\rm H}$ (-1,36 и -1,29 В Рисунок 2б), чем воздушно окисленный Mr90 с аналогичными покрытиями (-1,49 и -1,39 В Рисунок 2а). Как и на воздушно окисленной, так и на поверхности Mg после химического обезжиривания смесевой ИК обеспечивал наибольшее облагораживание E. Однако $E_{\rm H}$ электрода после адсорбции композиции, на фосфат содержащей оксидно-гидроксидной пленке, электроположительней, чем у 13 мМ ОлH+3 мМ 8- Γ OX на воздушно образованном оксиде.

Результаты СЭИ химически обезжиренного Мг90 без и пленками ИК приведены на рисунке 3б. Адсорбция ИК так же, как и на воздушно-окисленной поверхности приводит к росту $R_{\rm f}$ и $R_{\rm t}$. Однако, величины $n_{\rm f}$ указвывают на то, что в случаях пассивации в смесевом ИК и послойных модификациях поверхностные пленки более неоднородны по сравнению с таковыми на воздушно-образованном оксиде.

Согласно математическому моделированию наилучшим Z (99,83 % относительно соответствующего фона и 99,39 % относительно воздушно окисленного Mr90 соответственно) на такой поверхности обладает покрытие, сформированное в растворе смеси 13 мМ ОлH+3 мМ 8-ГОХ.

Предварительное химическое обезжиривание оказало положительное влияние на эффективность защиты адсорбционных пленок как ОлН так и 8-ГОХ. В большей степени это проявляется в случае хелатореагента. После обработки обезжиренного Мг90 в водном растворе 3 мМ этого комплексообразователя на поверхности пластин образуется равномерное светло-зеленое покрытие, которое обеспечивало полную защиту от коррозии сопоставимую с ОлН (Таблица 4). Как и в случае воздушно окисленного Мг90, послойное нанесение 13 мМ ОлН с 3 мМ 8-ГОХ на обезжиренном Мg обеспечивало самую эффективную защиту от коррозии. При этом потемнение образцов наблюдалось существенно позже (116,5 ч), а точки появлялись через 217,0 ч.

На анодных поляризационных кривых рисунка 2в видно, что $E_{\rm H}$ со всеми исследованными покрытиями смещены в катодную сторону относительно фона. Это может быть связано с частичным растворением рыхлой оксидногидроксидной пленки в процессе нанесения ИК. Как и в предыдущих двух случаях обработка оксидированного Mr90 в 3 мМ 8-ГОХ не обладала высокой эффективностью защиты. В тоже время остальные покрытия способствовали торможению анодного растворения. Ввиду отсутствия на кривых (Рисунок 2в) ярко-выраженных пассивных участков определить потенциал питтингообразования и какая из обработок обладает наивысшей эффективностью защиты из анодных поляризационных кривых достаточно трудно. Так если судить по $E_{\rm H}$, то наилучшую защиту обеспечивает покрытие 3 мМ 8-ГОХ// 13 мМ ОлН.

Однако если в качестве критерия использовать предельный анодный ток, то обратный порядок нанесения ИК обеспечивает более эффективную защиту.

Анализ диаграмм Найквиста на рис. За и 3в показал, что с увеличением толщины оксида возрастает величины $R_{\rm f}$ и $R_{\rm t}$. Аналогичным образом, как и в случае с химически обезжиренным магнием поверхностные пленки менее однородны по сравнению с таковыми на воздушно окисленном металле. Это косвенно подтверждает выводы электрохимических исследований о частичном растворении $Mg(OH)_2$ в процессе модификации ИК. Наибольшая величина Z на такой поверхности соответствует 13 мМ ОлН (Таблица 3).

Согласно данным СЭИ, пленка, сформированная в водном растворе 3 мМ 8-ГОХ, имеет примерно одинаковое сопротивление как на воздушно-окисленной и химически обезжиренной поверхности, так и на химически окисленной. В первых двух случаях такие величины соответствуют значениям $R_{
m f}$ соответствующих фоновых образцов. Однако на оксидированном в 5 М NaOH Mr90 под действием хелата сопротивление поверхностной пленки снижается в 2 раза, а ее неоднородность существенно возрастает. Это позволяет предположить, что 8-ГОХ неравномерному растворению способствует оксида. Ввиду растворимости хелата в щелочных средах, толщины и стойкости такой пленки недостаточно для эффективной защиты магния в боратном растворе с рН 9,2. В тоже время, в условиях влажной атмосферы это соединение превосходит другие покрытия. В пользу предположения о частичном растворении пленки хелата в слабощелочной среде говорит и уменьшение времени до появления первых коррозионных поражений при последующей обработке в 13 мМ ОлН (Таблица 4). На толстой пленке Mg(OH)₂ наблюдается некоторое ухудшение защитной эффективности покрытия 13 мМ ОлН//3 мМ 8-ГОХ, по сравнению с другими оксидами. Возможно, это также связанно с большей неоднородностью поверхностных слоев.

Выводы

- 1. Последовательная адсорбция сначала олеата натрия, а затем 8-оксихинолина из водных растворов на Mr90 обеспечивает продолжительную защиту металла во влажной атмосфере, при этом наблюдается важная роль определенной последовательности в нанесении ингибиторов. Преимущество послойной обработки наиболее наглядно в случае воздушно-окисленной и химически обезжиренной поверхности металла.
- 2. Изменение предварительной подготовки, и как следствие, толщины оксида оказывает неоднозначное влияние на защитные свойства ингибиторных слоев. Так химическое оксидирование в 5 М NaOH существенно повышало время защиты Mr90 во влажной атмосфере пленками индивидуальных соединений, в то время как, для полислойных покрытий такого эффекта замечено не было.

Информация о конфликте интересов. Авторы заявляют, что у них нет конфликта интересов.

Финансирование. Исследование выполнено при финансовой поддержке

Министерства науки и высшего образования Российской Федерации (122011300078-1).

Литература

- 1. T.C. Xu, Y. Yang, X.D. Peng, J.F. Song and F.S. Pan, Overview of advancement and development trend on magnesium alloy, *J. Magnes. Alloy.* 2019, 7(3), 536–544. doi: 10.1016/j.jma.2019.08.001
- 2. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020. *J. Magnes. Alloy*. 2021, 9(3), 705–747. doi: 10.1016/j.jma.2021.04.001
- 3. P. Predko, D. Rajnovic, M.L. Grilli, B.O. Postolnyi, V. Zemcenkovs, G. Rijkuris, E. Pole and M. Lisnanskis, Promising Methods for Corrosion Protection of Magnesium Alloys in the Case of Mg-Al, Mg-Mn-Ce and Mg-Zn-Zr: A Recent Progress Review, *Metals*, 2021, 11(7), 1133. doi: 10.3390/met11071133
- 4. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part II. Passivation and the role of chemical structure of carboxylates. *Int. J. Corros. Scale Inhib.*, 2016, 5(4), 282–318. doi: 10.17675/2305-6894-2016-5-4-1
- 5. S.V. Oleinik and Yu.I. Kuznetsov, Corrosion inhibitors in conversion coatings. IV. *Prot Met.*, 2007, 43, 391–397. doi: 10.1134/S0033173207040133
- 6. M. Toorani, M. Aliofkhazraei, M. Mahdavian and R. Naderi, Superior corrosion protection and adhesion strength of epoxy coating applied on AZ31 magnesium alloy pre-treated by PEO/Silane with inorganic and organic corrosion inhibitors, *Corr. Science*, 2021, 178, 109065. doi: 10.1016/j.corsci.2020.109065
- 7. В.А. Огородникова, Ю.И. Кузнецов и А.А. Чиркунов. Ингибирование коррозии сплава Мг90 композициями на основе олеата натрия. Ч. І. Соли высших алкенил- и арилкарбоксилатов, *Коррозия: материалы, защита,* 2020, 7, 25–32. doi: 10.31044/1813-7016-2020-0-7-25-32
- 8. В.А. Огородникова, Ю.И. Кузнецов и А.А. Чиркунов, Ингибирование коррозии сплава Мг90 композициями на основе олеата натрия. Ч. ІІ. Хелатореагенты и триалкоксисиланы, *Коррозия: материалы, защита.* 2020, 9, 18–24. doi: 10.31044/1813-7016-2020-0-9-18-24
- 9. V.A. Luchkina, Yu.I. Kuznetsov, D.B. Vershok, A.A. Chirkunov, N.A. Salavatov and O.V. Dement'eva. Corrosion inhibition of Mg90 alloy by mixtures based on sodium oleate. Influence of oxide film thickness. *Int. J. Corros. Scale Inhib.*, 2020, 9(4), 1607–1629. doi: 10.17675/2305-6894-2020-9-4-26
- 10. H. Medhashree and A.Na. Shetty, Synergistic inhibition effect of trisodium phosphate and sodium benzoate with sodiumdodecyl benzene sulphonate on the corrosion of Mg-Al-Zn-Mn alloy in 30% ethylene glycol containing chloride ions. *J. Adhes. Sci. Technol.*, 2019, 33(5), 523–548. doi: 10.1080/01694243.2018.1543529
- 11. C. Xiufang, L. Zhe, L. Lin, J. Guo, W. Haidou, and X. Binshi, Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy, *J. Mater. Eng. Perform.*, 2015, 24(1), 461–467. doi: 10.1007/s11665-014-1263-6

- 12. D.B. Huang, J.Y. Hu, G.L. Song and X.P. Guo, Inhibition effect of inorganic and organic inhibitors on the corrosion of Mg–10Gd–3Y–0.5Zr alloy in an ethylene glycol solution at ambient and elevated temperatures, *Electrochim. Acta.*, 2011, 56, 10166–10178. doi: 10.1016/j.electacta.2011.09.002
- 13. L.J. He, Y. Shao, S.Q. Li, L.Y. Cui, X.J. Ji, Y.B. Zhao and R.C. Zeng, Advances in layer-by-layer self-assembled coatings upon biodegradable magnesium alloys. *Sci. China Mater.*, 2021, 64(9), 2093–2106. doi: 10.1007/s40843-020-166
- 14. A.J. Patil, O. Jackson, L.B. Fulton, D. Hong, P.A. Desai, S.A. Kelleher, D.T. Chou, S.S. Tan, P.N. Kumta and E. Beniash, Anticorrosive Self-Assembled Alkylsilane Coatings for Resorbable Magnesium Metal Devices. *ACS Biomater. Sci. Eng.*, 2017, 3(4), 518–529. doi: 10.1021/acsbiomaterials.6b00585
- 15. Y. Wang, Z.P. Gu, J. Liu, J. Jiang, N.Y. Yuan, J.B. Pu and J.N. Ding, An organic/inorganic composite multi-layer coating to improve the corrosion resistance of AZ31B Mg alloy, *Surf. Coat. Technol.*, 2019, 360 276–284. doi: 10.1016/j.surfcoat.2018.12.125
- 16. L. Liu, Q.Y. Yang, L. Huang, X.M. Liu, Y.Q. Liang, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, Y.F. Zheng, K.W.W. Yeung and S.L. Wu, The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. *Appl. Surf. Sci.*, 2019, 484, 511–523. doi: 10.1016/j.apsusc.2019.04.107
- 17. Y.B. Zhao, H.P. Liu, C.Y. Li, Y. Chen, S.Q. Li, R.C. Zeng and Z.L. Wang, Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy, *Appl. Surf. Sci.*, 2018, 434, 787–795. doi: 10.1016/j. apsusc.2017.11.012
- 18. K.Y. Cai, X.J. Sui, Y. Hu, L. Zhao, M. Lai, Z. Luo, P. Liu and W.H. Yang, Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique. *Mater. Sci. Eng. C.*, 2011, 31(8), 1800–1808. doi: 10.1016/j.msec.2011.08.012
- 19. L.Y. Cui, R.C. Zeng, X.X. Zhu, T.T. Pang, S.Q. Li and F. Zhang, Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. *Front. Mater. Sci.*, 2016, 10(2), 134–146. doi: 10.1007/s11706-016-0332-1
- 20. L.X. Chen, C.M. Tseng, Y.M. Qiu, J.J. Yang, C.L. Chang, X.J. Wang and W. Li, A layer-by-layer assembled coating for improved stress corrosion cracking on biomedical magnesium alloy in cell culture medium, *Surf. Coat. Technol.*, 2020, 403, 126427. doi: 10.1016/j.surfcoat.2020.126427

Modification of magnesium surface in solutions of organic corrosion inhibitors by layer-by-layer method

V.A. Luchkina,* D.B. Vershok and A.A. Chirkunov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky av. 31/4, 119071 Moscow, Russian Federation *E-mail: masildik@mail.ru

Abstract

In the present work, the possibility of increasing the corrosion resistance of Mg90 by layer-by-layer modification of its surface in solutions of 13 mM sodium oleate and 3 mM 8-hydroxyquinoline was investigated. The influence of both the sequence of inhibitor application and the thickness of the oxide-hydroxide sublayer was evaluated. It is shown that the coating of 13 mM sodium oleate//3 mM 8-hydroxyquinoline formed on air-oxidized Mg90 provided the most effective corrosion protection of metal than their individual layers. Increasing the thickness of the oxide sublayer did not contribute to increasing the protective effect of the multilayer coatings, but significantly increased the corrosion resistance of Mg90 with films of individual inhibitors.

Key words: magnesium, corrosion inhibitors, sodium oleate, 8-hydroxyquinoline, layer-by-layer application