Preview

Title in english

Advanced search

Protection of metals from corrosion in the vapor phase. Overview. Part 1. Volatile corrosion inhibitors

Abstract

Protection of metals in neutral environments with pH 5–9 (in humid atmospheres and various aqueous solutions) can be achieved by forming thin coatings (up to several tens of nm) on their surfaces due to adsorption and more complex chemical interaction of organic corrosion inhibitors with the protected metal. This brief review discusses the features of the formation and protection of metals in the vapor-gas phase, i.e. volatile corrosion inhibitors (VCI) mainly on iron and carbon steels, copper and zinc. The important role of VCI chemisorption and, as a consequence, the possibility of its relatively long protective aftereffect under harsh conditions of high air humidity and periodic moisture condensation on the surface of metals is shown. A method has been demonstrated for increasing the efficiency of metal protection through the combined use of VCI and volatile silanes, including their layer-by-layer adsorption on the protected metal. The ability of silanes to undergo chemical transformations when interacting with water vapor turned out to be useful for the purposeful creation of protective nanoscale coatings on metals from the vapor-gas phase on metal surfaces with delayed VCI desorption, i.e., a relatively long protective aftereffect

About the Authors

Yu. I. Kuznetsov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Sciences, Leninsky pr. 31, 119071 Moscow



N. N. Andreev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Sciences, Leninsky pr. 31, 119071 Moscow



References

1. А.А. Михайлов, Ю.А. Панченко и Ю.И. Кузнецов, Атмосферная коррозия и защита металлов, Тамбов, Изд-во Р.В. Першина, 2016, 555 с.

2. Г.В. Акимов, Теория и методы исследования коррозии металлов, Изд-во Академии наук СССР, 1945, 414 с.

3. Н.Д. Томашов, Теория коррозии и защиты металлов, М.: Изд-во АН СССР, 1959, 592 с. 4. И.Л. Розенфельд, Атмосферная коррозия металлов, М.: Изд-во АН СССР, 1960, 372 с.

4. Ю.Н. Михайловский, Атмосферная коррозия металлов и методы их защиты, М.: Металлургия, 1989, 102 с.

5. Ву Динь Вуй, Атмосферная коррозия металлов в тропиках, М.: Наука, 1994, 240 с.

6. C. Leygraf, Atmospheric corrosion, Corros. Mech. Theory Pract., Inc. New York- Basel-Hong Kong, 1995, 421–455.

7. S.K. Chawla and J.H. Payer. Atmospheric corrosion: A comparison of indoor vs. outdoor, Proceedings 11th Int. Corros. Congr, 1990, 2–17

8. T.E. Graedel, Corrosion mechanisms for silver exposed to the atmosphere, J. Electrochem. Soc., 1992, 139, 1963. doi: 10.1149/1.2221162

9. C. Leygraf, I.O. Wallinder, J. Tidblad and T. Graedel, Atmospheric Corrosion, 2nd ed, New Haven, CT, USA, 2016, 152.

10. C. Leygraf and T.E. Graedel, Atmospheric corrosion, John Wiley & Sons, 2000, 187.

11. K. Barton, Protection against atmospheric corrosion. Theories and Methods, John Willey & Sons, 1976, 194.

12. Е.Н. Каблов, О.В. Старцев и И.М. Медведев, Обзор зарубежного опыта исследований коррозии и средств защиты от коррозии, Авиационные материалы и технологии, 2015, 35, 76–87. doi: 10.18577/2071-9140-2015-0-2-76-87

13. G.H. Koch, M.P. Brongers, N.G. Thompson, Y.P. Virmani and J.H. Payer, Corrosion cost and preventive strategies in the United States. – United States, Federal Highway Administration, 2002. – №. FHWA-RD-01-156, R315-01. URL: dot_40697_DS1.pdf

14. Коррозия. Справочник под ред. Л.Л. Шрайера, М.: Металлургия, 1981, 632 с.

15. ISO 8044:1989 Corrosion of metals and alloys - Vocabulary

16. И.Л. Розенфельд, Ингибиторы коррозии. М.: Издательство “Химия”, 1977, 352 с.

17. Л.И. Антропов, Е.М. Макушин и В.Ф. Панасенко, Ингибиторы коррозии металлов, Киев: Издательство “Технiка”, 1981, 183 с.

18. V.S. Sastri, Corrosion inhibitors: principles and applications, New York: Wiley, 1998, 231.

19. ГОСТ 9.014-78. ЕСЗКС Временная противокоррозионная защита изделий. Общие требования. М.: Изд-во стандартов, 1991, 91 с.

20. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Beltran, Technological Applications of Volatile Corrosion Inhibitors, Corros. Rev., 2018, 36, 227–238. doi: 10.1515/corrrev-2017-0102

21. И.Л. Розенфельд и В.П. Персианцева, Ингибиторы атмосферной коррозии. М.: Наука, 1985, 277 с.

22. P.D. Donovan, Protection of Metals from Corrosion in Storage and Transit, Chichester, Ellis Horwood Limited, 1986, 228 p.

23. Yu.I. Kuznetsov, The Role of irreversible adsorption in the protective action of volatile corrosion inhibitors, CORROSION-98, NACE, Houston, San Diego, 1998, Paper No. 242. Doi: 10.17675/2305-6894-2015-4-4-1

24. N.N. Andreev and Yu.I. Kuznetsov, Physicochemical aspects of the action of volatile corrosion inhibitors. Russ. Chem. Rev. 2005, 74, 685–695. doi: 10.1070/RC2005v074n08ABEH001162

25. D.M. Bastidas, E. Cano and E.M. Mora, Volatile corrosion inhibitors: a review, Anti- Corros. Meth. Mater. 2005, 52, 71–77. Doi: 10.1108/00035590510584771

26. N.N. Andreev and Yu.I. Kuznetsov, Progress in the fundamental of volatile inhibitors of atmospheric corrosion of metals, Rev. Corros. Inhib. Sci. Technol., Vol. 3, Pap. Corros.-2004 Symp., 2004, 1–18.

27. C. Fiaud, Theory and practice of vapour phase inhibitors, Working Party Report on Corrosion Inhibitors, 1994, 1–12.

28. F.A. Ansari, C. Verma, Y.S. Siddiqui, E.E. Ebenso and MA. Quraishi, Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: a review. Int. J. Corros. Scale Inhib. 2018, 7, 126–150. doi: 10.17675/2305-6894-2018-7-2-2

29. S. Gangopadhyay and P.A. Mahanwar, Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review, J. Coat. Technol. Res. 2018, 15, 789–807. doi: 10.1007/s11998-017-0015-6

30. D.D.N. Singh and M.K. Banerjee, Vapour phase corrosion inhibitors—A review, Anti- Corros. Methods Mater. 1984, 31, 4–22. doi: 10.1108/eb010198

31. Pat. 600328 GB, IPC C23F11/02. Corrosion inhibition and anti-corrosion packaging / Applicant: SHELL DEV, Publication date: 06.04.1948, Priority date: 05.10.1944

32. Pat. 2629649 US, IPC C23F11/02. Vapor-phase corrosion inhibitor / Inventor: A. Wachter and N. Stillman, Applicant: SHELL DEV, Publication date: 24.02.1953, Priority date: 31.10. 1949.

33. Pat. 954564 GB, IPC B65D81/26, C23F11/02, D21H21/36. Packaging materials for the protection of copper, copper-base alloys and other metals / Applicant: DAUBERT CHEMICAL CO. Publication date: 08.04.1964, Priority date: 20.02. 1961.

34. Yu.I. Kuznetsov and L.P. Kazansky, Physicochemical aspects by azoles as corrosion inhibitors, Russ. Chem. Rev. 2008, 77, 219–232. doi: 10.1070/RC2008v077n03ABEH003753

35. A.A. Khadom, Protection of Steel Corrosion Reaction by Benzotriazoles: A Historical Background, J. Failure Anal. Prev. 2015, 15, 794–802. doi: 10.1007/s11668-015-0043-4

36. Yu.I. Kuznetsov, Triazoles as a class of multifunctional corrosion inhibitors. A review. Part I. 1,2,3-Benzotriazole and its derivatives. Copper, zinc and their alloys, Int. J. Corros. Scale Inhib. 2018, 7, 271–307. doi: 10.17675/2305-6894-2018-7-3-1

37. Pat. 59023884 JP, IPC C23F11/02, H05K3/28. Rust preventive resin composition. / Inventor: Urahama Kadoaki, Numamoto Tetsuo and Wada Tatsuo. Applicant: NITTO ELECTRIC IND CO. Publication date: 07.02.1984, Priority date: 30.07.1982.

38. Pat. 2023753 RU, IPC C23F11/00. Volatile inhibitor of corrosion. / Inventor: A.I. Trufanova, S.A. Ivanova, Y.G. Sushkin, S.F. Khlebnikova, N.N. Voevodina, R.A. Ustinova, A.A. Vukolova, T.A. Lazareva, V.V. Galichev, S.I. Kravets, L.P. Borodina, T.V. Goryacheva, Y.A. Krylatov, S.S. Stailskij and L.F. Kovalev, Applicant: TUL’SKII GOSUDARSTVENNII TEKHNICHESKII UNIVERSITET. Publication date: 30.11.1994, Priority date: 28.05.1991.

39. Pat. 62109987 JP, IPC C23F11/02. Volatile corrosion inhibitor. / Inventor: Totani Junzo, Sudo Hidekazu, Yamauchi Toshiyuki and Kanekawa Eisuke. Applicant: JOHOKU KAGAKU KOGYO KK. Publication date: 21.05.1987, Priority date: 18.11.1985.

40. Pat. 6085905 US, IPC C23F11/02. Water-soluble containers for water cooling towers and boilers. / Inventor: B. Miksic, M. Kharshan and A.J. Bly Applicant: CORTEC CORP. Publication date: 11.07.2000, Priority date: 22.09.1999.

41. Pat. 2169209 RU, IPC C23F11/02. Volatile corrosion inhibitor. / Inventor: V.A. Alferov, S.F. Khlebnikova and V.V. Dolgov Applicant: OAO TJAZHPROMARMATURA. Publication date: 20.06.2001, Priority date: 27.04.2000.

42. Pat. 20050022451 KR, IPC C09D5/08. Volatile corrosion inhibitor (VCI) powder with improved properties to produce good quality VCI product. / Inventor: Choi Hang Ho. Applicant: Choi Hang Ho. Publication date: 08.03.2005, Priority date: 30.08.2003.

43. Pat. 20100101264 KR, IPC C23F11/08, D21H19/12, D21H21/38. Multi-metal volatile corrosion inhibitor. / Inventor: Kang Byung Cheol. Applicant: SAMBU TECH CO LTD. Publication date: 17.09.2010, Priority date: 09.03.2009.

44. Pat. 20070117170 KR, IPC C23F11/08. Volatile corrosion inhibitor and the manufacturing method thereof. / Inventor: Han Sang Cheol and Park Jong Won. Applicant: RTI ENGINEERING CO LTD, Park Jong Won. Publication date: 12.12.2007, Priority date: 07.06.2006.

45. Yu.I. Kuznetsov, Triazoles as a class of multifunctional corrosion inhibitors. Overview. Part II. 1,2,3-benzotriazole, its derivatives. iron and steels, Int. J. Corros. Scale Inhib. 2020, 9, 780–811. doi: 10.17675/2305-6894-2020-9-3-1

46. L.P. Kazanskii and I.A. Silyaninov, XPES of 1,2,3-benzotriazole nanolayers formed o iron surface, Prot. Met. Phys. Chem. Surf. 2010, 46, 797–804.

47. M.O. Agafonkinа, N.P. Andreeva, Yu.I. Kuznetsov and S.F. Timashev. Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions, Russian J. Phys. Chem. A. 2017, 91(8), 1414–1421. doi: 10.1134/S0036024417080027

48. L.P. Kazansky, I.A. Selyaninov and Yu.I. Kuznetsov, Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface, Appl. Surf. Sci., 2012, 259, 385–392. doi: 10.1016/j.apsusc.2012.07.056

49. A. Fateh, M. Aliofkhazraei and A.R. Rezvanian, Review of corrosive environments for copper and its corrosion inhibitors, Arabian J. of Chemistry., 2020, 13, 481–544. doi: 10.1016/j.arabjc.2017.05.021

50. A.T. Simonovič, Z.Z. Tasič, M.B. Radovanovič, M.B. Petrovič Mihajlovič and M.M. Antonijevič, Influence of 5-chlorobenzotriazole on inhibition of copper corrosion in acid rain solution, ACS Omega., 2020, 5, 12832–12841. doi: 10.1021/acsomega.0c00553

51. M.O. Agafonkina, Yu.I. Kuznetsov, N.P. Andreeva, Yu.E. Pronin and L.P. Kazanskii, Formation of protective layers by 5-chlorobenzotriazole and its mixture with sodium fluphenaminate on low carbon steel from aqueous solutions, Prot. Met. Phys. Chem. Surf., 2012, 48, 773–779. doi: 10.1134/S2070205112070027

52. S.M. Abd El Haleem, S. Abd El Wanees and A. Bahgat Radwan, Environmental factors affecting the corrosion behaviour of reinforcing steel. VI. Benzotriazole and its derivatives as corrosion inhibitors of steel, Corros. Sci., 2014, 87, 321–333. doi: 10.1016/j.corsci.2014.06.043

53. Ю.И. Kузнецов, Н.Н. Aндреев, O.A. Гончарова и A.В. Агафонкин, O защите металлов от коррозии летучими ингибиторами при конденсации влаги на них, Коррозия: материалы, защита, 2009, 10, 29–33.

54. И.Л. Розенфельд и К.А. Жигалова, Ускоренные методы коррозионных испытаний металлов. (Теория и практика.), М.: Металлургия, 1966, 347 с.

55. П.А. Акользин, Коррозия и защита металла теплоэнергетического оборудования. М.: Энергоиздат, 1982, 304 с.

56. А.П. Акользин, Противокоррозионная защита стали пленкообразователями. М.: Металлургия, 1989, 192 с.

57. I.L. Ro en eld , V.P. Persiantseva, M.N. Polteva and P.B. Terentyev, Investigation of the mechanism of protection of metals from corrosion by the means of volatile inhibitors, Proceed. of I Eur. Sympos. on Corros. and Scale Inhib.,1961, 329.

58. A.V. Agafonkin, Yu.I. Kuznetsov and N.P. Andreeva, Formation of protective nanolayers on metals formed by N-benzylbenzylidenimine and (3- aminopropyl)triethoxysilane from gas-vapor phase. Prot. Met. Phys. Chem. Surf., 2011, 47, 866–872. doi: 10.1134/S2070205111070021

59. O.A. Goncharova, Yu.I. Kuznetsov, N.N. Andreev and E.A. Nad’kina, Depositing nanolayers of volatile organic compounds on metals for higher resistance to atmospheric corrosion, Prot. Met. Phys. Chem. Surf., 2016, 52, No. 7, 1140–1147. doi: 10.1134/S2070205116070078

60. ГОСТ 9.054-75 Единая система защиты от коррозии и старения. Консервационные масла, смазки и ингибированные пленкообразующие нефтяные составы. Методы ускоренных испытаний защитной способности. М.: Изд-во стандартов, 1991, 91 с.

61. M. Stratman, W. Furbeth, G. Grungmeier, R. Losch and C.R. Reinartz, Corros. Mech. Theory Pract. (3rd Ed.), 1995, 373–419.

62. S.P. Pujari, L. Scheres, A.T.M. Marcelis and H. Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chem. Int. Ed., 2014, 53, 6322–6356. doi: 10.1002/anie.201306709


Review

For citations:


Kuznetsov Yu.I., Andreev N.N. Protection of metals from corrosion in the vapor phase. Overview. Part 1. Volatile corrosion inhibitors. Title in english. 2023;(2):1-15. (In Russ.)

Views: 222


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.