Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Коррозионная стойкость покрытий цинк–алюминий и цинк–алюминий–магний в различных регионах мира

Аннотация

Представлен обзор литературных данных, полученных в результате длительных испытаний цинкового, цинк–алюминиевого и цинк–алюминий–магниевого покрытий на углеродистой стали в ряде стран (Испании, Португалии, Франции, Германии, бывшей Чехословакии, Австрии, Швеции, Нидерландах, США, Китае, Японии, Мексике, Бразилии, Таиланде, Сингапуре, Объединенных Арабских Эмиратах). Данные коррозионного поражения покрытий сгруппированы по испытаниям в зависимости от категории коррозионной агрессивности атмосферы (согласно стандарта ISO 9223) и ее типа (сельской, городской/промышленной, морской, морской/городской). Показано, что у покрытий сплавами коррозионная стойкость выше, чем у покрытий цинком. В атмосфере низкой коррозионной агрессивности пассивация поверхности покрытий оказывает дополнительный положительный эффект. Представлены возможные интервалы установившейся скорости коррозии покрытий для каждой категории в зависимости от типа атмосферы, позволяющие в первом приближении оценить срок службы покрытий. Дана критическая оценка методик проведения натурных испытаний покрытий на основе цинка.

Об авторах

Ю. М. Панченко
Институт физической химии и электрохимии имени А.Н. Фрумкина РАН (ИФХЭ РАН)
Россия

119071, Москва, Ленинский проспект, 31 корп. 4



А. И. Маршаков
Институт физической химии и электрохимии имени А.Н. Фрумкина РАН (ИФХЭ РАН)
Россия

119071, Москва, Ленинский проспект, 31 корп. 4



Л. А. Николаева
Институт физической химии и электрохимии имени А.Н. Фрумкина РАН (ИФХЭ РАН)
Россия

119071, Москва, Ленинский проспект, 31 корп. 4



Т. А. Ненашева
Институт физической химии и электрохимии имени А.Н. Фрумкина РАН (ИФХЭ РАН)
Россия

119071, Москва, Ленинский проспект, 31 корп. 4



Список литературы

1. D.P. Schmidt, B.A. Shaw, E. Sikora and W.W. Shaw, Corrosion Protection Assessment of Barrier Properties of Several Zinc–Containing. Coating Systems on Steel in Artificial Seawater, Corrosion, 2006, 62, 323–339. doi: 10.5006/1.3280665

2. H.N. McMurray, G. Parry and B.D. Jeffs, Corrosion resistance of Zn–Al alloy coated steels investigated using electrochemical impedance spectroscopy, Ironmaking Steelmaking, 1998, 25, no. 3, 210–215.

3. S. Fujita and D. Mizuno, Corrosion and corrosion test methods of zinc coated steel sheets on automobiles, Corros. Sci., 2007, 49, no. 1, 211–219. doi: 10.1016/j.corsci.2006.05.034

4. T. Prosek, N. Larche, M. Vlot, F. Goodwin and D. Thierry, Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications, Mater. Corros., 2010, 61, no. 5, 412–420. doi: 10.1002/maco.200905425

5. S. Kuroda, J. Kawakita and M. Takemoto, An 18-Year Exposure Test of ThermalSprayed Zn, Al, and Zn–Al Coatings in Marine Environment, Corrosion, 2006, 62, no. 7, 635–647. doi: 10.5006/1.3280677

6. ГОСТ 9.307-89, ЕЗСКС, Покрытия горячие цинковые. Общие требования и методы контроля.

7. D.E.Ch. Mora and D.V.A.C. Ballester, Analysis of metallic coatings based in zinc– aluminum–magnesium alloys, in terms of performance and long-term corrosion. Case study: electrical cable trays selection in project design, Diss. Universitat Politècnica de València, 2021.

8. X.G. Zhang, Corrosion and Electrochemistry of Zinc, Plenum Press, New York 1996, 241 p.

9. A. Tomandi and E. Labrenz, The corrosion behavior of ZnAlMg alloys in maritime Environments, Mater. Corros., 2016, 67, no. 12, 1286–1293. doi: 10.1002/maco.201609076

10. S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori and

11. A.C. Kneissl, Corrosion behavior of Zn–Al–Mg coated steel sheet in sodium chloride– containing environment, Corros. Sci., 2009, 51, 2355–2363. doi: 10.1016/j.corsci.2009.06.019

12. D. Knotkova, K. Kreislova and S.W. Dean, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, PA, 2010.

13. J. Tidblad, V. Kucera and A.A. Mikhailov, Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels. UN/ECE ICP on Effects on Materials. Swedish Corrosion Institute, Stockholm, Sweden, Report no. 30, 1998, 49.

14. J. Tidblad, V. Kucera, A.A. Mikhailov, J. Henriksen, K. Kreislova, T. Yates, B. Stockle and J.M. Schreiner, UN/ECE ICP Materials: dose-response functions on dry and wet acid deposition effects after 8 years of exposure, Water, Air, Soil Pollut., 2001, 130, 1457–1462. doi: 10.1023/A:1013965030909

15. M. Morcillo, Atmospheric corrosion in Ibero–America, The MICAT project, Atmospheric corrosion, ASTM STP 1239, W.W. Kirk and Herbert H. Lawson, Eds., American Society for Testing and Materials, Philadelphia, PA, 257–275. doi: 10.1520/STP14924S

16. Yu.M. Panchenko, T.B. Pustovskih and P.V. Strekalov, Marine Corrosion Tests of Electroplates for Ship Instruments: II. Protective and Decorative Properties and the Lifetime of Zinc, Cadmium, and Cadmium–Tin Coatings, Prot. Met., 1997, 33, no. 2, 166–179.

17. Yu.M. Panchenko, P.V. Strekalov and T.B. Pustovskikh, Marine Corrosion Tests of Electroplates for Ship Instruments: III. Corrosion and Mass of Corrosion Products Retained on the Surface of Zinc and Cadmium Electroplates, Prot. Met., 1997, 33, no. 3. 270–275.

18. ISO 9223:2012(E): Corrosion of metals and alloys Corrosivity of atmospheres Classification, determination and estimation, International Standards Organization, Geneva, 2012.

19. E. Palma, J.M. Puente and M. Morcillo, The atmospheric corrosion mechanism of 55% Al–Zn coating on steel, Corros. Sci., 1998, 40, no. 1, 61–68. doi: 10.1016/s0010938x(97)00112-1

20. A.R. Marder, The metallurgy of zinc–coated steel, Prog. Mater. Sci., 2000, 45, no. 3, 191–271. doi: 10.1016/S0079–6425(98)00006–1

21. O. de Rincón, A. Rincón, M. Sánchez, N. Romero, O. Salas, R. Delgado and Z. Panosian, Evaluating Zn, Al and Al-Zn coatings on carbon steel in a special atmosphere, Constr. Build. Mater., 2009, 23, no. 3, 1465–1471. doi: 10.1016/j.conbuildmat.2008.07.002

22. P. Schouller-Guinnet, C. Alltly and P. Volovich, ZnAlMg: an innovative metallic coaling that offers protection in the harshest environments. Genova (Italy), 2011, 11.

23. N. Lebozec, D. Thierry, A. Peltola, L. Luxem, G. Luckeneder, G. Marchiaro and M. Rohwerder, Corrosion performance оf Zn–Mg–Al coated steel in accelerated corrosion tests in the automotive industry, Mater. Corros., 2012, 11, no. 3, 1238–1268. doi: 10.1002/maco.201206959

24. D. Thierry, L. Luxem, G. Luckeneder, G. Marchiaro, A. Peltola, N. Le Bozec and M. Rohwerder, Autocoat – European Commission, Advanced zinc–based hot dip coatings for the automotive application, Eur. Comm., [Rep.] EUR, Luxembourg, 2013, 133.

25. Nordic Galvanizers, n.d. Corrosion performance – Real performance evaluations in infrastructure applications. Stockholm. S. Kimab, Alternative materials for Cable Tray systems, Kista, Sweden, 2014.

26. M. Salgueiro Azevedo, C. Allély, K Ogle and P. Volovitch, Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate, Corros. Sci., 2015, 90, 472–481. doi: 10.1016/j.corsci.2014.05.014

27. N. LeBozec, D. Thierry, D. Persson, C.K. Riener and G. Luckeneder, Influence of microstructure of zinc–aluminum–magnesium alloy coated steel on the corrosion behavior in outdoor marine atmosphere, Surf. Coat. Technol., 2019, 374, 897–909. doi: 10.1016/j.surfcoat.2019.06.052

28. D. Thierry, D. Persson, G. Luckeneder and K.H. Stellnberger, Atmospheric corrosion of ZnAlMg coated steel during long-term atmospheric weathering at different worldwide exposure sites, Corros. Sci., 2019, 148, 338–354. doi: 10.1016/j.corsci.2018.12.033

29. D. Thierry, N. LeBozec, A. Le Gac and D. Persson, Long-term atmospheric corrosion rates of hot dip galvanized steel and zinc–aluminum–magnesium coated steel. Mater. Corros., 2019, 70, 2200–2227. doi: 10.1002/maco.201911010

30. Reports of subcommittee XVI, Committee A-5 (a) Proc. ASTM, 1944, 95–107; Proc. ASTM, 1952, 118–122; Proc. ASTM, 1962, 176.

31. ГОСТ 5-9246-75. Покрытия металлические и неметаллические неорганические для деталей судового приборостроения. Требования к выбору видов и толщин. Требования к покрытиям.

32. A.R. Marder, The metallurgy of zinc–coated steel, Prog. Mater. Sci., 2000, 45, 191– 271. doi: 10.1016/S0079–6425(98)00006–1

33. A.R. Marder, Effects of surface treatments on materials performance. Materials selection and design. ASM Handbook, 1997, 20, 470. doi: 10.31399/asm.hb.v20.a0002466

34. Z. Panossian, L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J.J. Pen, F. Herrera, F. Corvo, M. Sanchez, O.T. Rincon and G. Pridybailo, J. Simancas, Steel cathodic protection afforded by zinc, aluminum and zinc/aluminum alloy coatings in the atmosphere, Surf. Coat. Technol., 2005, 190, 244–248. doi: 10.1016/j.surfcoat.2004.04.023

35. H. Katayama and S. Kuroda, Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area, Corros. Sci., 2013, 76, 35–41. doi: 10.1016/j.corsci.2013.05.021


Рецензия

Для цитирования:


Панченко Ю.М., Маршаков А.И., Николаева Л.А., Ненашева Т.А. Коррозионная стойкость покрытий цинк–алюминий и цинк–алюминий–магний в различных регионах мира. Коррозия: защита материалов и методы исследований. 2023;(1):21-55.

For citation:


Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Nenasheva T.A. Corrosion resistance of zinc–aluminum and zinc–aluminum–magnesium coatings in various regions of the world. Title in english. 2023;(1):21-55. (In Russ.)

Просмотров: 446


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.