Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Защита металлов тонкими гидрофобными покрытиями

https://doi.org/10.61852/2949-3412-2025-3-2-148-168

Аннотация

В статье рассматривается возможность гидрофобизации поверхности металлов и сплавов, как способ замедления их коррозии в агрессивной среде. Эффективность гидрофобной обработки во многом зависит от природы металла, гидрофобного реагента и растворителя. В некоторых случаях возможна пассивация металлов. Формирование тонкого гидрофобного защитного покрытия на металлах осуществляется не только из органических, но и водных растворов, в которых важную роль играет хемосорбция гидрофобного агента. Показана возможность повышения устойчивости гидрофобной поверхности алюминиевого сплава АМг6 и его пассивного состояния при обработке водным раствором олеилсаркозината натрия с добавлением в него аминоэтиламинопропилтриметоксисилана. Рассмотрены способы гидрофобизации меди и ее зашита триазолами, тиазолами и смесевыми ингибиторами коррозии на их основе, а также алкантиолами.

Об авторах

А. М. Семилетов
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Россия

119071, Москва, Ленинский проспект, д. 31, корп. 4



Ю. И. Кузнецов
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Россия

119071, Москва, Ленинский проспект, д. 31, корп. 4



Список литературы

1. R.A. Scherrer and S.M. Howard, Use of distribution coefficients in quantitative structure-activity relationships, J. Med. Chem., 1977, 20, no. 1, 53−58. doi: 10.1021/jm00211a010

2. J.I. Bregman, Corrosion inhibitors, Macmillan, New York, 1963, 320 pp.

3. Yu.I. Kuznetsov and G.V. Redkina, Thin protective coatings on metals formed by organic corrosion inhibitors in neutral media, Coatings, 2022, 12, no. 2, 149. doi: 10.3390/coatings12020149

4. Yu.I. Kuznetsov, Organic inhibitors of corrosion of metals, Plenum Press, New York and London, 1996, 283 pp. doi: 10.1007/978-1-4899-1956-4

5. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part II. Passivation and the role of chemical structure of carboxylates, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 282–318. doi: 10.17675/2305-6894-2016-5-4-1

6. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part III. Passivation and the role of the chemical structure of organophosphates, Int. J. Corros. Scale Inhib., 2017, 6, no. 4, 282–318. doi: 10.17675/2305-6894-2017-6-3-1

7. M. Weinert, J.S. Gutmann and M. Dornbusch, Hydrophobic phytic acid conversion layers for corrosion protection of steel surfaces, J. Coat. Technol. Res., 2024, 21, no. 2, 703–736. doi: 10.1007/s11998-023-00852-w

8. H.E. Mohammadloo and A.A. Sarabi, Titanium-phytic acid nano structured conversion coating formation on CRS substrate, Prog. Org. Coat., 2016, 101, 391–399. doi: 10.1016/j.porgcoat.2016.09.009

9. G. Boisier, N. Portail and N. Pébère, Corrosion inhibition of 2024 aluminium alloy by sodium decanoate, Electrochim. Acta, 2010, 55, no. 21, 6182–6189. doi: 10.1016/j.electacta.2009.10.080

10. G.A. Salensky, M.G. Cobb and D.S. Everhart, Corrosion inhibitor orientation on steel, Ind. Eng. Chem. Prod. Res. Dev., 1986, 25, no. 2, 133–140. doi: 10.1021/i300022a002

11. A.M. Semiletov, Yu.I. Kuznetsov and A.A. Chirkunov, On the hydrophobization of the surface of AMg6 alloy and its protection from atmospheric corrosion by mixtures of higher carboxylates acids, Prot. Met. Phys. Chem. Surf., 2022, 58, no. 7, 1255–1261. doi: 10.1134/S2070205122070140

12. G. Boisier, A. Lamure, N. Pébère, N. Portail and M. Villatte, Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids, Surf. Coat. Tech., 2009, 203, no. 22, 3420–3426. doi: 10.1016/j.surfcoat.2009.05.008

13. C.C. Landry, N. Pappé, M.R. Mason, A.W. Apblett, A.N. Tyler, A.N. MacInnes and A.R. Barron, From minerals to materials: synthesis of alumoxanes from the reaction of boehmite with carboxylic acids, J. Mater. Chem., 1995, 5, no. 2, 331–341, doi: 10.1039/JM9950500331

14. M.W. Kendig, A.J. Davenport and H.S. Isaacs, Mechanism of corrosion inhibition by chromate conversion coatings from X-ray absorption near edge spectroscopy (XANES), Cor. Sci., 1993, 34, no. 1, 41–49. doi: 10.1016/0010-938X(93)90257H

15. G.P. Shulman and A.J. Bauman, Corrosion protection with organic acid sealants for anodized aluminum, in book: Organic coatings for corrosion control, 1998, 420–422. doi: 10.1021/bk-1998-0689.ch034

16. G. Žerjav and I. Milošev, Carboxylic acids as corrosion inhibitors for Cu, Zn and Brasses in simulated urban rain, Int. J. Electrochem. Sci., 2014, 9, 2696–2715. doi: 10.1016/S1452-3981(23)07957-9

17. P.M. Karlsson, A.E.C. Palmqvist and K. Holmberg, Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate on aluminum, studied by QCM-D, XPS, and AAS, Langmuir, 2008, 24, no. 23, 13414–13419. doi: 10.1021/la802198s

18. P.M. Karlsson, M. W. Anderson and A.E.C. Palmqvist, Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate at the surface of aluminium oxide studied with AFM, Cor. Sci., 2010, 52, no. 4, 1103–1105. doi: 10.1016/j.corsci.2009.11.014

19. D-H. Xia, C. Pan, Z. Qin, B. Fan, S. Song, W. Jin and W. Hu, Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection, Prog. Org. Coat., 2020, 143, 105638, doi: 10.1016/j.porgcoat.2020.105638

20. C. Pan, X. Wang, Y. Behnamian, Z. Wu, Z. Qin, D-H. Xia and W. Hu, Monododecyl phosphate film on LY12 aluminum alloy: pH-controlled self-assembly and corrosion resistance, J. Electrochem. Soc., 2020, 167, 161510. doi: 10.1149/1945-7111/abd3bb

21. Y. Kobayashi and Y. Fujiwara, Corrosion protection of cerium conversion coating modified with a self-assembled layer of phosphoric acid mono-n-alkyl ester, Electrochem. Sol. Let., 2006, 9, no. 3, B15–B18. doi: 10.1149/1.2162328

22. G. Brunoro, A. Frignani, A. Colledan and C. Chiavari, Organic films for protection of copper and bronze against acid rain corrosion, Cor. Sci., 2003, 45, no. 10, 2219–2231. doi: 10.1016/S0010-938X(03)00065-9

23. G. Žerjav and I. Milošev, Protection of copper against corrosion in simulated urban rain by the combined action of benzotriazole, 2-mercapto-benzimidazole and stearic acid, Cor. Sci., 2015, 98, 180–191. doi: 10.1016/j.corsci.2015.05.023

24. A.T. Simonović, Ž.Z. Tasić, M.B. Radovanović, M.B. Petrović Mihajlović and M.M. Antonijević, Influence of 5-chlorobenzotriazole on inhibition of copper corrosion in acid rain solution, ACS Omega, 2020, 5, no 22, 12832–12841. doi: 10.1021/acsomega.0c00553

25. B.V. Appa Rao, M. Narsihma Reddy and B. Sreedhar, Self-assembled 1-octadecyl-1H1,2,4-triazole films on copper for corrosion protection, Prog. Org. Coat., 2014, 77, no. 1, 202–212. doi: 10.1016/j.porgcoat.2013.09.009

26. H. Tian, W. Li, K. Cao and B. Hou, Potent inhibition of copper corrosion in neutral chloride media by novel non-toxic thiadiazole derivatives, Cor. Sci., 2013, 73, 281–291. doi: 10.1016/j.corsci.2013.04.017

27. A. Rajalakshmi Devi, S. Ramesh and V. Periasamy, Corrosion protection of copper using amino acid self assembled monolayers, JOS, 2015, 5, no. 8, 583–598. doi: 10.21276/jos

28. W. Chen, S. Hong, H.B. Li, H.Q. Luo, M. Li and N.B. Li, Protection of copper corrosion in 0.5 M NaCl solution by modification of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2thione potassium self-assembled mono-layer, Cor. Sci., 2012, 61, 53–62. doi: 10.1016/j.corsci.2012.04.023

29. Ž. Petrović, M. Metikoš-Huković and R. Babić, Modification of copper with selfassembled organic coatings, Prog. Org. Coat., 2008, 61, no. 1, 1–6. doi: 10.1016/j.porgcoat.2007.08.006

30. H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li and J.L. Luo, Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiolmodified copper electrodes in halide-containing solutions, Electrochim. Acta, 2003, 48, no. 28, 4277–4289. doi: 10.1016/j.electacta.2003.08.003

31. D.A. Hutt and Ch. Liu, Oxidation protection of copper surfaces using self-assembled monolayers of octadecanethiol, Appl. Surf. Sci., 2005, 252, no. 2, 400–411. doi: 10.1016/j.apsusc.2005.01.019

32. N. Wei, Y. Jiang, Y. Ying, X. Guo, Y. Wu, Y. Wen and H. Yang, Facile construction of a polydopamine-based hydrophobic surface for protection of metals against corrosion, RSC Advances, 2017, 7, no. 19, 11528–11536. doi: 10.1039/c7ra00267j

33. Y. Yamamoto, H. Nishihara and K. Aramaki, Self-assembled layers of alkanethiols on copper for protection against corrosion, J. Electrochem. Soc., 1993, 140, no. 2, 436. doi: 10.1149/1.2221064

34. F. Sinapi, S. Julien, D. Auguste, L. Hevesi, J. Delhalle and Z. Mekhalif, Monolayers and mixed-layers on copper towards corrosion protection, Electrochim. Acta, 2008, 53, no. 12, 4228–4238. doi: 10.1016/j.electacta.2007.12.061

35. F. Sinapi, J. Delhalle and Z. Mekhalif, XPS and electrochemical evaluation of twodimensional organic films obtained by chemical modification of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on copper surfaces, Mater. Sci. Eng. C, 2002, 22, no. 2, 345–353. doi: 10.1016/S0928-4931(02)00210-2

36. F. Sinapi, I. Lejeune, J. Delhalle and Z. Mekhalif, Comparative protective abilities of organothiols SAM coatings applied to copper dissolution in aqueous environments, Electrochim. Acta, 2007, 52, no. 16, 5182–5190. doi: 10.1016/j.electacta.2006.12.087

37. A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, no. 4, 1533−1554. doi: 10.1021/cr9502357

38. M. Itoh, H. Nishihara and K. Aramaki, A chemical modification of alkanethiol selfassembled monolayers with alkyltrichlorosilanes for the protection of copper against corrosion, J. Electrochem. Soc., 1994, 141, no. 8, 2018−2023, doi: 10.1149/1.2055053

39. П.А. Акользин, Коррозия и защита металла теплоэнергетического оборудования, 1982, Энергоиздат, Москва, 304 с.

40. В.Ф. Тяпков и Н.Л. Харитонова, Применение пленкообразующих аминов для обеспечения коррозионной стойкости конструкционных материалов оборудования и трубопроводов на энергоблоках АЭС (обзор), Теплоэнергетика, 2022, № 9, 22−32 doi: 10.56304/S0040363622090089

41. В.П. Исаченко, Теплообмен при конденсации, 1977, Энергия, Москва, 240 с.

42. Г.А. Филиппов, Г.А. Салтанов и А.Н. Кукушкин, Гидродинамика и тепломассообмен в присутствии поверхностно-активных веществ, 1988, Энергоатомиздат, Москва, 184 с.

43. O.A. Goncharova, A.Yu. Luchkin, N.N. Andreev, N.P. Andreeva and S.S. Vesely, Triazole derivatives as chamber inhibitors of copper corrosion, Int. J. Corros. Scale Inhib., 2018, 7, no. 4, 657–672. doi: 10.17675/2305-6894-2018-7-4-12

44. A.Yu. Luchkin, O.A. Goncharova, S.S. Vesely, T.T. Trang, D.D. Trung, P.N. Tu, M.V. Minh, C.N. Linh, N.V. Thang, S.G. Gubin, S.V. Bel’skii, I.K. Bel’skaya, N.N. Andreev and V.A. Karpov, Field tests of the efficiency of a mixture of octadecylamine and benzotriazole in the chamber protection of metals in the tropics, Int. J. Corros. Scale Inhib., 2022, 11, no. 4, 1668–1678. doi: 10.17675/2305-6894-2022-11-4-16

45. D. Yu and J. Tian, Superhydrophobicity: Is it really better than hydrophobicity on anticorrosion? Coll. Surf. A: Physicochem. Eng. Aspects, 2014, 445, 75−78. doi: 10.1016/j.colsurfa.2014.01.016


Рецензия

Для цитирования:


Семилетов А.М., Кузнецов Ю.И. Защита металлов тонкими гидрофобными покрытиями. Коррозия: защита материалов и методы исследований. 2025;(2):148-168. https://doi.org/10.61852/2949-3412-2025-3-2-148-168

For citation:


Semiletov A.M., Kuznetsov Yu.I. Protection of metals with thin hydrophobic coatings. Title in english. 2025;(2):148-168. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-2-148-168

Просмотров: 52


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.