Preview

Title in english

Advanced search

Protection of steel in acid solutions by an oxytetracycline-based inhibitor

https://doi.org/10.61852/2949-3412-2025-3-3-38-51

Abstract

An effective inhibitor of corrosion of St3 steel in solutions of sulfuric and phosphoric acids has been developed based on the pharmaceutical drug for veterinary purposes – oxytetracycline. It has been established that in individual form this pharmaceutical preparation does not provide significant protection of steel in the studied environments. Its use in the form of a two-component mixture with NH4NCS is more promising. A composite inhibitor of 0.1−0.2%   oxytetracycline+0.01% NH4NCS has been proposed, which is capable of providing effective long-term protection of steel in H2SO4 solutions with a wide range of acid concentrations (0.25−2.00 M) and temperatures t = 20−80°C. This mixture significantly slows down corrosion of low-carbon steel in 1.00 M H3PO4 at temperatures up to 95°C. The developed composition is no worse in its effectiveness in inhibiting steel corrosion in H2SO4 and H3PO4 solutions in comparison with similar mixed inhibitors created on the basis of an industrial surfactant – cocamidopropyl betaine and a veterinary drug – tricillin.

About the Authors

Ya. G. Avdeev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation


K. L. Anfilov
Federal State Autonomous Educational Institution of Higher Education «Bauman Moscow State Technical University»
Russian Federation


T. E. Andreeva
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation


References

1. Ya.G. Avdeev, Inhibitory protection of metals in acid solutions by pharmaceuticals. A critical review, Int. J. Corros. Scale Inhib., 2024, 13, no. 4, 2543–2569. doi: 10.17675/2305-6894-2024-13-4-35

2. G. Gece, Drugs: A review of promising novel corrosion inhibitors, Corros. Sci., 2011, 53, 3873–3898. doi: 10.1016/j.corsci.2011.08.006

3. R.K. Pathak and P. Mishra, Drugs as Corrosion Inhibitors: A Review, International Journal of Science and Research, 2016, 5, no. 4, 671–677.

4. S. Tanwer and S.K. Shukla, Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A review, Current Res. Green Sustainable Chem., 2022, 5, 100227. doi: 10.1016/j.crgsc.2021.100227

5. L.T. Popoola, Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors, Heliyon, 2019, 5, e01143. doi: 10.1016/j.heliyon.2019.e01143

6. S. Sharma, R. Ganjoo, S. Kumar and A. Kumar, Evaluation of Drugs as Corrosion Inhibitors for Metals: A Brief Review, Advances in Chemical, Bio and Environmental Engineering. CHEMBIOEN 2021. Environmental Science and Engineering, Springer, Cham. Eds. J.K. Ratan, D. Sahu, N.N. Pandhare, A. Bhavanam, 2022. doi: 10.1007/978-3-030-96554-9_71

7. N. Vaszilcsin, A. Kellenberger, M.L. Dan, D.A. Duca and V.L. Ordodi, Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review, Materials, 2023, 16, 5555. doi: 10.3390/ma16165555

8. C. Verma, M.A. Quraishi and K.Y. Rhee, Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors, J. Mol. Liq., 2021, 328, 115395. doi: 10.1016/j.molliq.2021.115395

9. M.A. Quraishi and D.S. Chauhan, Drugs as Environmentally Sustainable Corrosion Inhibitors, ACS Symposium Series, 2021, 1404, 1–17. doi: 10.1021/bk-2021-1404.ch001

10. S. Sharma and A. Kumar, Recent advances in metallic corrosion inhibition: A review, J. Mol. Liq., 2021, 322, 114862. doi: 10.1016/j.molliq.2020.114862

11. R.C. Nduma, O.S.I. Fayomi, M.O. Nkiko, A.O. Inegbenebor, N.E. Udoye, O. Onyisi, O. Sanni and J. Fayomi, Review of metal protection techniques and application of drugs as corrosion inhibitors on metals, IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1107, 012023. doi: 10.1088/1757-899X/1107/1/012023

12. C. Verma, D.S. Chauhan and M.A. Quraishi, Drugs as environmentally benign corrosion inhibitors for ferrous and nonferrous materials in acid environment: An overview, JMES, 2017, 8, no. 11, 4040–4051.

13. M.J. Baari and C.W. Sabandar, A Review on Expired Drug-Based Corrosion Inhibitors: Chemical Composition, Structural Effects, Inhibition Mechanism, Current Challenges, and Future Prospects, Indones. J. Chem., 2021, 21, no. 5, 1316–1336. doi: 10.22146/ijc.64048

14. C.N. Njoku, B.N. Enendu, S.J. Okechukwu, N. Igboko, S.O. Anyikwa, A.I. Ikeuba, I.B. Onyeachu, I.-I.N. Etim and D.I. Njoku, Review on anti-corrosion properties of expired antihypertensive drugs as benign corrosion inhibitors for metallic materials in various environments, Results in Engineering, 2023, 18, 101183. doi: 10.1016/j.rineng.2023.101183

15. G.K. Shamnamol, K.P. Sreelakshmi, G. Ajith and J.M. Jacob, Effective utilization of drugs as green corrosion inhibitor – A review, AIP Conf. Proc., 2020, 2225, 070006. doi: 10.1063/5.0005931

16. A.M. El-Shamy and S.M. Mouneir, Medicinal Materials as Eco-friendly Corrosion Inhibitors for Industrial Applications: A Review, J. Bio. Tribo. Corros., 2023, 9, 3. doi: 10.1007/s40735-022-00714-9

17. M.A.I. Al-Hamid, S.B. Al-Baghdadi, T.S. Gaaz, A.A. Khadom, E. Yousif and A. Alamiery, Green chemistry solutions: Harnessing pharmaceuticals as environmentally friendly corrosion inhibitors: A review, Int. J. Corros. Scale Inhib., 2024, 13, no. 2, 630–670. doi: 10.17675/2305-6894-2024-13-2-1

18. S.R. Al-Mhyaw, Application of expired Tramadol medicinal drug for corrosion inhibition of steel in acidic environment: Analytical, kinetic, and thermodynamic studies, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1282–1302. doi: 10.17675/2305-6894-2022-11-3-22

19. Ya.G. Avdeev and Yu.I. Kuznetsov, Acid corrosion of metals and its inhibition. A critical review of the current problem state, Int. J. Corros. Scale Inhib., 2022, 11, no. 1, 111–141. doi: 10.17675/2305-6894-2022-11-1-6

20. М.В. Тюрина, Е.Н. Юрасова, Я.Г. Авдеев и Ю.И. Кузнецов, Защита низкоуглеродистой стали в растворах минеральных кислот медицинскими препаратами трифенилметанового ряда, Коррозия: материалы, защита, 2017, № 9, 37–46.

21. Y. Liang, C. Wang, J.S. Li, L.J. Wang and J.J. Fu, The Penicillin Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution: Experimental and Theoretical Studies, Int. J. Electrochem. Sci., 2015, 10, no. 10, 8072–8086. doi: 10.1016/S1452-3981(23)11077-7

22. S.B. Uakkaz, R. Zerdoumi, K. Oulmi, D. Mellahi and G.M. Andreadis, Electrochemical Study of Penicillin-G as a Corrosion Inhibitor for Fe-19Cr Stainless Steel in Hydrochloric Acid, Port. Electrochim. Acta, 2017, 35, no. 4, 211–224. doi: 10.4152/pea.201704211

23. S.K. Shukla, A.K. Singh, I. Ahamad and M.A. Quraishi, Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution, Materials Letters, 2009, 63, nos. 9−10, 819–822. doi: 10.1016/j.matlet.2009.01.020

24. Y. Li, R. Miao, Y. Li, X. Peng and L. Niu, Corrosion inhibition of two tetracycline based expired antibiotics as eco-friendly inhibitors for mild steel in 1M HCl solution, Materials and Corrosion, 2024. doi: 10.1002/maco.202314030

25. Ya.G. Avdeev and Yu.I. Kuznetsov, Inhibitory protection of steels from high temperature corrosion in acid solutions. A review. Part 1, Int. J. Corros. Scale Inhib., 2020, 9, no. 2, 394–426. doi: 10.17675/2305-6894-2020-9-2-2

26. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1261–1276. doi: 10.17675/2305-6894-2020-9-4-5

27. A. Ouarga, T. Zirari, S. Fashu, M. Lahcini, H. Ben Youcef and V. Trabadelo, Corrosion of iron and nickel based alloys in sulphuric acid: Challenges and prevention strategies, J. Mater. Res. Technol., 2023, 26, 5105–5125. doi: 10.1016/j.jmrt.2023.08.198

28. G. Pracht and N. Perschnick, A Material Challenge – Pumps in Sulphuric Acid Application, Procedia Engineering, 2016, 138, 421–426. doi: 10.1016/j.proeng.2016.02.101

29. J.A. Richardson, 2.23 − Corrosion in Sulfuric Acid, in Shreir's Corrosion, Eds. S. Lyon, T. Richardson, B. Cottis, R. Lindsay, D. Scantlebury, H. Stott, M. Graham, Elsevier, 2010, 1226–1249. dio: 10.1016/B978-044452787-5.00180-3

30. J.A. Richardson and A.A. Abdullahi, Corrosion in Sulfuric Acid, in Reference Module in Materials Science and Materials Engineering, Elsevier, 2017, 24 p. doi: 10.1016/B978-0-12-803581-8.10517-X

31. Ya.G. Avdeev, Protection of metals in phosphoric acid solutions by corrosion inhibitors. A review, Int. J. Corros. Scale Inhib., 2019, 8, no. 4, 760–798. doi: 10.17675/2305-6894-2019-8-4-1

32. Ya.G. Avdeev, M.V. Tyurina and Yu.I. Kuznetsov, Protection of low-carbon steel in phosphoric acid solutions by mixtures of a substituted triazole with sulfur-containing compounds, Int. J. Corros. Scale Inhib., 2014, 3, no. 4, 246–253. doi: 10.17675/2305-6894-2014-3-4-246-253

33. Ya.G. Avdeev, A.V. Panova, V.V. Al’brandt, K.L. Anfilov, A.G. Berezhnaya and T.A. Vagramyan, Inhibitory protection of low-carbon steel in solutions of hydrochloric, sulfuric, and phosphoric acids, Int. J. Corros. Scale Inhib., 2024, 13, no. 1, 508–525. doi: 10.17675/2305-6894-2024-13-1-25

34. В.П. Григорьев и В.В. Богинская, Кислотная коррозия железа в присутствии смесей анионных добавок и соединений реакционного ряда производных о оксиазометина с нуклеофильными заместителями, Защита металлов, 2006, 42, № 6, 627–631.

35. Ya.G. Avdeev, T.E. Andreeva and K.L. Anfilov, Effect of some organic surfactants on the corrosion behavior of low-carbon steel in hydrochloric acid solution, Int. J. Corros. Scale Inhib., 2023, 12, no. 3, 1052–1064. doi: 10.17675/2305-6894-2023-12-3-15

36. А.А. Халимова, Обзор рынка антибиотиков и оценка перспектив его развития, Medical & pharmaceutical journal «Pulse», 2023, 25, № 2, 77–83. doi: 10.26787/nydha-2686-6838-2023-25-2-77-83

37. M.С. Мирошникова, Тетрациклиновые антибиотики в животноводстве и ветеринарии, Шаг в науку, 2021, № 2. 10–20.


Review

For citations:


Avdeev Ya.G., Anfilov K.L., Andreeva T.E. Protection of steel in acid solutions by an oxytetracycline-based inhibitor. Title in english. 2025;(3):38-51. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-3-38-51

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.