Preview

Title in english

Advanced search

Predictions of first-year corrosion losses of structural metals at extremely high chloride deposition rates

https://doi.org/10.61852/2949-3412-2025-3-3-65-86

Abstract

The possibility of predicting the first-year corrosion losses of typical structural metals (carbon steel, zinc, copper, and aluminum) at extremely high rates of chloride deposition on the material surface is shown. The thickness of water retained by metal corrosion products after one-year exposure of samples to the open atmosphere is estimated. It is shown that in order to use the high/extreme rate of chloride deposition observed in months with typhoons/hurricanes, it is necessary to estimate the thickness of the deposited aerosols and the possibility of their flowing off the surface of the samples. To predict one-year corrosion losses of metals, it is necessary to take into account only a fraction of the rate of chloride deposition on the "wet candle" sampler. Based on the data obtained at the NRC "Kurchatov Institute" – VIAM, a model of the rate of chloride deposition was developed taking into account high wind speeds.

About the Authors

Y. M. Panchenko
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


A. I. Marshakov
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


L. A. Kudryavtseva
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


V. V. Kovtanyuk
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


T. A. Nenasheva
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


A. A. Rybkina
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


T. N. Igonin
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Russian Federation


A. I. Vdovin
All-Russian Research Institute of Aviation Materials of the National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" – VIAM)
Russian Federation


T. V. Koval
All-Russian Research Institute of Aviation Materials of the National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" – VIAM)
Russian Federation


References

1. D. Knotkova, K. Kreislova and S.W. Dean, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, PA, 2010. doi:10.1520/DS71-EB

2. M. Morcillo, Atmospheric corrosion in Ibero-America, The MICAT project, Atmospheric corrosion, ASTM STP 1239, W.W. Kirk and Herbert H. Lawson, Eds., American Society for Testing and Materials, Philadelphia, PA, 257–275. doi: 10.1520/STP14924S

3. B. Chico, D. de la Fuente, I. Díaz, J. Simancas and M. Morcillo, Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases, Mater., 2017, 10, no. 6, 601. doi: 10.3390/ma10060601

4. M. Morcillo, B. Chico, E. Otero and L. Mariaca, Effect of marine aerosol on atmospheric corrosion, Mater. Perform., 1999, 38, 72–77.

5. I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 2013, 76, 348–360. doi: 10.1016/j.corsci.2013.06.053

6. J. Alcántara, B. Chico, I. Díaz, D. de la Fuente and M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci., 2015, 97, 74–88. doi: 10.1016/j.corsci.2015.04.015

7. A. Castañeda, F. Corvo, D. Fernández and C. Valdés, Outdoor-Indoor Atmospheric Corrosion in a Coastal Wind Farm Located in a Tropical, Island Engineering Journal, 2017, 21, no. 2, doi: 10.4186/ej.2017.21.2.43

8. L.G. Franzen, Transport, Deposition and Distribution of Marine Aerosols over Southern Sweden during Dry Westerly Storms, Ambio, 1990, 19, no. 4, 180–188.

9. Ю.М. Панченко, А.И. Маршаков, Т.А. Ненашева, Т.Н. Игонин, А.Е. Кутырев, М.А. Фомина и А.И. Вдовин, Коррозионная стойкость конструкционных металлов при разной ориентации образцов на различных расстояниях от морского берега, Коррозия: защита материалов и методы исследований, 2024, 2, no. 2, 29–44. doi: 10.61852/2949-3412-2024-2-2-29-44

10. ISO 9225:2012(E). Corrosion of metals and alloys – Corrosivity of atmospheres – Measurement of environmental parameters affecting corrosivity of atmospheres

11. Y.M. Panchenko, A.I. Marshakov, L.A. Nikolaeva and T.N. Igonin, Development of models for the prediction of first-year corrosion losses of standard metals for territories with a coastal atmosphere in various climatic regions of the world, Corros. Eng., Sci. Technol., 2022, 55, no. 8, 655–669. doi: 10.1080/1478422X.2020.1772535

12. J.A. Jaen, J. Iglesias, C. Hernandez, Analysis of Short-Term Steel Corrosion Products Formed in Tropical Marine Environments of Panama, Corros., 2012, 1– 11. doi: 10.1155/2012/162729

13. J.A. Jaén, J. Iglesias and O. Adames, Indoor atmospheric corrosion of conventional weathering steels in the tropical atmosphere of Panama, Hyperfine Interact, 2014, 224, 279–288, doi: 10.1007/s10751-013-0826-5

14. ГОСТ 9.107-2023. Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы. Основные положения.

15. R. Vera, B.M. Rosales and C. Tapia, Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere, Corros. Sci., 2003, 45, 321–337 doi: 10.1016/S0010-938X(02)00071-9

16. Отчет о НИР «Разработка расчетной модели для прогнозирования первогодовых коррозионных потерь металлических материалов, учитывающую мощность нагрузки (энергию) ветров морского направления», ИФХЭ РАН, Москва, 2023 г.

17. М.Г. Абрамова, Ю.М. Панченко, Е.Ю. Ветрова и Т.А. Ненашева, Коррозионная агрессивность атмосферы в различных климатических районах РФ, Коррозия: материалы, защита, 2020, 3, 12–22. doi 10.31044/1813-7016-2020-0-3-12-22

18. J. Alcаntara, D. de la Fuente, B. Chico, J. Simancas, I. Diaz and M. Morcillo, Marine Atmospheric Corrosion of Carbon Steel: A Review, Mater., 2017, 10, 406. doi: 10.3390/ma10040406

19. I.S. Cole and D.A. Paterson, Possible effects of climate change on atmospheric corrosion in Australia, Corros. Eng., Sci. Technol., 2010, 45, no. 1, 19–26. doi: 10.1179/147842209X12579401586483

20. I.S. Cole, N.S. Azmat, A. Kanta and M. Venkatraman, What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc, Int. Mater. Rev., 2009, 54, no. 3, 117–133. doi: 10.1179/174328009X411145

21. F. Zezza and F. Macri, Marine aerosol and stone decay, Revista Science of Total Environment, 1995, 167, 123–143. doi: 10.1016/0048-9697(95)04575-L

22. J.C. Guerra, A. Castañeda, F. Corvo, J.J. Howland and J. Rodríguez, Atmospheric corrosion of low carbon steel in a coastal zone of Ecuador: Anomalous behavior of chloride deposition versus distance from the sea, Materials and Corros., 2018, 1–17. doi: 10.21041/CONPAT2019/V1CC300

23. D.C. Blanchard and A.H. Woodcock, The production, concentration and vertical distribution of the sea-salt aerosol, Ann. NY Acad. Sci., 1980, 338, 330–347. doi: 10.1111/j.1749-6632.1980.tb17130.x

24. I.S. Cole and D.A. Paterson, Holistic model for atmospheric corrosion Part 5. Factors controlling deposition of salt aerosol on candles, plates and buildings, Corros. Eng., Sci. Technol., 2004, 39, no. 2, 125–130. doi: 10.1179/147842204225016949

25. Y.M. Panchenko, A.I. Marshakov, L.A. Kudryavtseva, V.V. Kovtanyuk and T.A. Nenasheva, A chloride deposition model for predicting the categories of atmospheric corrosivity in coastal areas. Corros. Eng., Sci. Technol., 2025, 60, no. 5, 376–389. doi: 10.1177/1478422X241298181


Review

For citations:


Panchenko Y.M., Marshakov A.I., Kudryavtseva L.A., Kovtanyuk V.V., Nenasheva T.A., Rybkina A.A., Igonin T.N., Vdovin A.I., Koval T.V. Predictions of first-year corrosion losses of structural metals at extremely high chloride deposition rates. Title in english. 2025;(3):65-86. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-3-65-86

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.