Evaluation of the effectiveness of migrating corrosion inhibitors in relation to steel reinforcement in concrete when immersed in seawater near Khanh Hoa (Vietnam)
https://doi.org/10.61852/2949-3412-2025-3-3-106-120
Abstract
Two commercial migrating corrosion inhibitors (MCIs): MasterProtect 8000 CI, MasterProtect 8500 CI (MBCC Group), and one promising product, MCI-VN, were tested for the protection of steel reinforcement in concrete exposed to seawater along the Khanh Hoa coast (Vietnam) over 6 months. It was found that the alkoxysilane-based impregnations MasterProtect 8000 CI and MasterProtect 8500 CI reduced biofouling on the concrete surface by approximately twofold compared to the control samples without inhibitors. This effect is presumed to be associated with surface hydrophobization. The MCI-VN impregnation reduced biofouling by 30%, while other application methods of MCI showed no significant impact on biofouling. The corrosion state of the reinforcing steel was assessed using electrochemical methods and visual inspection of the steel surface following GOST 31383-2008. A passive state of the steel was observed when MCI-VN was applied as migrating impregnations to the surface of hardened concrete before seawater exposure. When MCI-VN was used as an admixture during concrete preparation, and in the case of MasterProtect 8000 CI and MasterProtect 8500 CI impregnations, electrochemical measurements indicated a passive state. However, visual inspection revealed surface corrosion spots on the reinforcement, classifying the condition as unstable passive. Possible directions for improving regulatory guidelines for assessing the corrosion state of steel reinforcement and corrosion rate have been proposed to distinguish the effectiveness of various corrosion protection measures, including MCIs.
About the Authors
N. CaoViet Nam
D. S. Shevtsov
Russian Federation
V. Nguyen
Viet Nam
D. Nguyen
Viet Nam
V. Tran
Viet Nam
T. Le
Viet Nam
V. Dong
Viet Nam
K. Ho
Viet Nam
Q. Nong
Viet Nam
I. D. Zartsyn
Russian Federation
References
1. J.Y. Hu, S.S. Zhang, E. Chen and W.G. Li, A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construct. Build. Mater., 2022, 325, 126718. doi: 10.1016/j.conbuildmat.2022.126718.
2. V.Q. Dang, Y. Ogawa, P.T. Bui and K. Kawai, Effects of chloride ions on the durability and mechanical properties of sea sand concrete incorporating supplementary cementitious materials under an accelerated carbonation condition, Construct. Build. Mater., 2021, 274, 122016. doi: 10.1016/j.conbuildmat.2020.122016.
3. K. Osterminski, Zur voll-probabilistischen Modellierung der Korrosion von Stahl in Beton: Ein Beitrag zur Dauerhaftigkeitsbemessung von Stahlbetonbauteilen, Dissertation Doktor-Ingenieurs, Technischen Universität München, München, Deutchland, 2013, 211 pp. (in German). url: https://mediatum.ub.tum.de/doc/1164926/1164926.pdf.
4. O. Agboola, K.W. Kupolati, O.S.I. Fayomi, A.O. Ayeni, A. Ayodeji, J.J. Akinmolayemi, O. Olagoke, R. Sadiku and K.M. Oluwasegun, A review on corrosion in concrete structure: inhibiting admixtures and their compatibility in concrete, Journal of Bio-and Tribo-Corrosion, 2022, 8, no. 1, 25. doi: 10.1007/s40735-021-00624-2
5. D. Bjegovic and B.A. Miksic, Topically Applied migrating corrosion inhibitors for Reinforced Concrete Protection. EuroCorr 2000, London, England, 2000.
6. I.A. Gedvillo, A.S. Zhmakina, N.N. Andreev and S.S. Vesely, Protection of rusted reinforcing steel in concrete by IFKhAN-85 inhibitor. Int. J. Corros. Scale Inhib., 2020, 9, no. 2, 562–570. doi: 10.17675/2305-6894-2020-9-2-11.
7. A.S. Tarasov, M.A. Khvastin, I.A. Gedvillo, A.S. Zhmakina, S.S. Vesely, N.N. Andreev and M.A. Chayko, On the depth of penetration of migrating corrosion inhibitor Haenytex Protectoseal CI into concrete. Int. J. Corros. Scale Inhib., 2023, 12, no. 4, 2327–2332. doi: 10.17675/2305-6894-2023-12-4-46.
8. W. Morris and M. Vazquez, A migrating corrosion inhibitor evaluated in concrete containing various contents of admixed chlorides, Cem. Concr. Res., 2002, 32, 259– 267. doi: 10.1016/S0008-8846(01)00669-X.
9. H.H.B. Zheng, W.H. Li, F.B. Ma and Q.L. Kong, The effect of a surface-applied corrosion inhibitor on the durability of concrete, Constr. Build. Mater., 2012, 37, 36–40. 10.1016/j.conbuildmat.2012.07.007.
10. A.U. Malik, I. Andijani, F. Al-Moaili and G. Ozair, Studies on the performance of migratory corrosion inhibitors in protection of rebar concrete in Gulf seawater envi ronment, Cem. Concr. Comp., 2004, 26, no. 3, 235–242. doi: 10.1016/S0958-9465(03)00042-8.
11. D. Shevtsov, N.L. Cao, V.C. Nguyen, Q.Q. Nong, H.Q. Le, D.A. Nguyen, I. Zartsyn and O. Kozaderov, Progress in sensors for monitoring reinforcement corrosion in re inforced concrete structures–a review, Sensors, 2022, 22, no. 9, 3421. doi: 10.3390/s22093421.
12. Q. Wang, Z. Wang, C. Li, X. Qiao, H. Guan, Z. Zhou and D. Song, Research Pro gress in Corrosion Behavior and Anti-Corrosion Methods of Steel Rebar in Con crete. Metals, 2024, 14, no. 8, 862. doi: 10.3390/met14080862.
13. C. Andrade, Propagation of reinforcement corrosion: principles, testing and model ling, Mater. Struct., 2019, 52, no. 1, 2. doi: 10.1617/s11527-018-1301-1.
14. M. Daniyal and S. Akhtar, Corrosion assessment and control techniques for rein forced concrete structures: a review, J. Build. Pat. Rehab.,2020, 5, no. 1, 1. doi: 10.1007/s41024-019-0067-3.
15. A. Zaki, H.K. Chai, D.G. Aggelis and N. Alver, Non-destructive evaluation for cor rosion monitoring in concrete: A review and capability of acoustic emission tech nique, Sensors, 2015, 15, no. 8, 19069–19101. doi: 10.3390/s150819069.
16. B. Elsener, C. Andrade, J. Gulikers, R. Polder and M. Raupach, Half-cell potential measurements – potential mapping on reinforced concrete structures, Mater. Struct., 2003, 36, 461–471. doi: 10.1007/BF02481526.
17. R. Polder, C. Andrade, B. Elsener, Ø. Vennesland, J. Gulikers, R. Weidert and M. Raupach, Test methods for on site measurement of resistivity of concrete, Mater. Struct., 2000, 33, no. 10, 603–611. 10.1007/BF02480599.
18. C. Andrade and C. Alonso, Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Ma ter. Struct., 2004, 37, no. 9, 623–643. doi: 10.1007/BF02483292.
19. ASTM C876-22b:2022, Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA, 2022, 8 p. doi: 10.1520/C0876-22B.
20. ОДМ 218.3.001-2010. Рекомендации по диагностике активной коррозии арматуры в железобетонных конструкциях мостовых сооружений на автомобильных дорогах методом потенциалов полуэлемента: – Введ. 2011.01.01. – М. : РОСАВТОДОР, 2010. – 32 с.
21. DGZFP B 03:2021, Electrochemical potential measurements for the detection of re inforcement steel corrosion, German, Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., 2021. (in German)
22. AASHTO T 358:2024, Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration, American Association of State Highway and Transportation Officials, 2024.
23. ГОСТ Р 52804-2007, Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний, Стандартинформ, Москва, 2008, 32 с.
24. ASTM G109:2023, Standard Test Methods for Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments, American Society for Testing and Materials, 2023.
25. ГОСТ 31383-2008, Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний, Стандартинформ, Москва, 2008, 34 с.
26. D. Trejo, C. Halmen, K. Reinschmidt, Corrosion performance tests for reinforcing steel in concrete, FHWA Technical Report 0-4825-1, Texas: Texas Transportation Institute, 2009, 254 p. url: http://tti.tamu.edu/documents/0-4825-1.pdf.
27. url: https://ceind.com.au/wp-content/uploads/2017/11/MasterProtect-8000CI.pdf
28. url: https://image.indotrading.com/co2721/pdf/p986801/masterprotect%208500ci%20tds.pdf.
29. N.L. Cao, V.C. Nguyen, D.A. Nguyen, T.M.H. Le, Q.Q. Nong and D.S. Shevtsov, Protective performance of the migrating corrosion inhibitor MCI-VN for steel rein forcement in concrete pore solution, Journal of Tropical Science and Engineering, 2025, no. 39 (accepted for publication).
30. N.L. Cao, D.S. Shevtsov, T.M.H. Le, V.C. Nguyen, D.A. Nguyen, V.K. Dong, V.T. Tran, I.V. Avetisyan and I.D. Zartsyn, Assessing the efficacy of IFKhAN-80 as a migrating corrosion inhibitor for reinforcing steel in new and chloride contaminated concrete via polarization resistance method, Int. J. Corros. Scale Ihib., 2024, 13, no 4, 2007–2021. doi: 10.17675/2305-6894-2024-13-4-6.
31. D.S. Shevtsov, N.L. Cao, I.D. Zartsyn, V.C. Nguyen, Q.Q. Nong, H.Q. Le, and A.T. Nguyen, Evaluation of the efficiency of the secondary corrosion protection of steel reinforcement bars in concrete using a bimetallic batch sensor, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1228–1237. doi: 10.17675/2305-6894-2022-11-3-19.
32. N.N. Andreev, I.A. Gedvillo, A.S. Zhmakina, D.S. Bulgakov and S.S. Vesely, Envi ronmental testing of the efficiency of IFKhAN-80, an inhibitor for corrosion protec tion of steel reinforcement in concrete, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 319–324. doi: 10.17675/2305-6894-2016-5-4-2.
Review
For citations:
Cao N., Shevtsov D.S., Nguyen V., Nguyen D., Tran V., Le T., Dong V., Ho K., Nong Q., Zartsyn I.D. Evaluation of the effectiveness of migrating corrosion inhibitors in relation to steel reinforcement in concrete when immersed in seawater near Khanh Hoa (Vietnam). Title in english. 2025;(3):106-120. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-3-106-120