Preview

Title in english

Advanced search

Processes of adaptation and protective characteristics growth in multilayer polymer coatings modified with carbon nanotubes

https://doi.org/10.61852/2949-3412-2025-3-4-61-79

Abstract

The electrochemical (EC) properties of multilayer adaptive coatings (AC) modified with carbon nanotubes (CNT) have been studied. Within the framework of the theory of “reduced” geometric states, a methodological approach is formulated to compare the characteristics of the echoes of multilayer coatings of different thicknesses. The influence of AC modification by CNT has been studied. It is shown that CNTs have a significant effect on the EC characteristics. For the coatings under consideration, a positive value of the potential of the substrate under the coating with CNT is found. Moreover, with increasing exposure time, further refinement of both Pt and St3 protected substrates is observed. It is shown that the impedance kinetics of multilayer AC on different substrates can be described within the framework of a combination of known equivalent schemes (ES) (Voit, Mansfeld, Mansfeld−Voit), corresponding to models of defectfree coating, coatings with through pores and coatings with internal defects. It is shown that during exposure in an aggressive environment, the evolution of the coating/substrate ES system is observed. The nature of the evolution of the ES of the same coating is different on different metal substrates. It has been established that there is no obvious correlation of the potential of substrates (corroding St3 and inert Pt) with the corrosion potentials of the corresponding metals and with their corrosion resistance at an exposure of 3% NaCl. It is suggested that in the case of AC, the potential of the substrate is formed not only by the anodic process on the substrate, but also by EC processes of oxidation and structuring in the polymer base of the AC under the influence of the medium.

About the Authors

V. A. Golovin
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation

31-4, Leninsky prospect, 119071 Moscow



S. A. Dobriyan
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation

31-4, Leninsky prospect, 119071 Moscow



V. A. Shchelkov
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation

31-4, Leninsky prospect, 119071 Moscow



References

1. ISO 12944-5:2007, Лаки и краски. Антикоррозионная защита стальных конструкций с помощью защитных лакокрасочных систем. Часть 5. Защитные лакокрасочные системы, Москва, Стандартинформ, 2008, 30 с.

2. V.A. Golovin and S.A. Dobriyan, Effects of adaptation and self-healing of protective polymer coatings in corrosive media, Int. J. Corros. Scale Inhib., 2022, 11, no. 2, 705– 726. doi: 10.17675/2305-6894-2022-11-2-18

3. V.A. Golovin, S.A. Dobriyan and A.K. Buryak, Polymer coatings’ long-term adaptation and self-healing effects in corrosive media. Int. J. Corros. Scale Inhib, 2022, 11, no. 3, 1172–1190. doi: 10.17675/2305-6894-2022-11-3-16

4. В.В. Родионов и А.М. Мякишев, Обзор применений углеродных нанотрубок в полимерных композиционных материалах, Современные материалы, техника и технологии, 2019, № 6, 8–12.

5. G. Cai, J. Hou, D. Jiang and Z. Dong, Polydopamine-wrapped carbon nanotubes to improve the corrosion barrier of polyurethane coating, RSC Adv., 2018, 8, 23727–23741. doi: 10.1039/c8ra03267j

6. Д.В. Давыдова, Н.В. Тарасова, И.А. Дьяков и Ю.В. Литовка, Модифицирование гальванического покрытия олово-висмут углеродными нанотрубками для повышения коррозионной стойкости, Наноиндустрия, 2019, 12, № 3–4, 212–219. doi: 10.22184/1993-8578.2019.12.3-4.212.219

7. Е.А. Лукина, Д.В. Зайцев и В.А. Романенко, Структура и свойства композиционного материала на основе алюминиевого сплава с добавлением углеродных нанотрубок, Авиационные материалы и технологии, 2019, № 4, 27–34. doi: 10.18577/2071-9140-2019-0-4-27-34

8. C. Gabrielli, Use and application of electrochemical impedance techniques, Farnborough, 1990, 78 р.

9. F. Brambilla, E. Campazzi, D. Sinolli, P-J. Lathiere, et al., Accelerated corrosion testing: a prodictive tool, Theses of The Annual Congress of the European Federation of Corrosion (EUROCORR 2018), Cracow, Poland, September 9–13, 2018, 120935.

10. Н.А. Поклонский и Н.И. Горбачук, Основы импедансной спектроскопии композитов, Минск, БГУ, 2005, 130 с.

11. D. Ramesh and T. Vasudevan, Evaluation of corrosion stability of water soluble epoxyester primer through electrochemical studies, Materials Sciences and Applications, 2012, 3, no. 6, 333–347. doi: 10.4236/msa.2012.36049

12. ISO 16773-4, Electrochemical impedance spectroscopy (EIS) on coated and uncoated metallic specimens, 2017.

13. А.А. Гухман, Применение теории подобия к исследованию процессов тепломассобмена, Москва, Высшая школа, 1974, 328 с.

14. V.A. Golovin and A.B. Il’in, Diffusion of highly corrosive media (HCM) into protective polymer coating materials, Int. J. Corros. Scale Inhib., 2020, 9, no. 4. 1329–1366. doi: 10.17675/2305-6894-2020-9-4-8

15. Н.П. Жук, Курс теории коррозии и защиты металлов, Москва, Металлургия, 1976, 472 с.

16. V.A. Golovin, S.A. Dobriyan and V.E. Kasatkin, Evolution of electrochemical impedance spectra of adaptive polymer anticorrosive coatings modified with carbon nanotubes exposed to corrosive environment, Int. J. Corros. Scale Inhib., 2023, 12, no. 4, 1521–1534. doi: 10.17675/2305-6894-2023-12-4-7


Review

For citations:


Golovin V.A., Dobriyan S.A., Shchelkov V.A. Processes of adaptation and protective characteristics growth in multilayer polymer coatings modified with carbon nanotubes. Title in english. 2025;(4):61-79. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-4-61-79

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.