Evolution of electrochemical properties and digital modeling of composite polymer protective coatings in aggressive environments
Abstract
Evolution of electrochemical properties of multilayer polymer composite coatings and their constituent primer and inert insulating layers on various metal substrates in chloride media are considered.
It is shown that electrochemical models for typical functional coating layers (insulating and priming) can undergo significant changes during exposure in aggressive environments. The smallest changes are observed for an insulating layer with an inert polymer base and with inert fillers deposited on an inert (Pt) substrate: the digital model is described by the simplest equivalent circuit (ES) with one characteristic relaxation process over the entire exposure time range.
For the same coating on a corroding steel substrate, such a model is correct only at the initial stage of exposure. Later, as the under film corrosion develops, the ES evolves into a system with two relaxation processes. In primer coatings with a corrosive metal filler (Zn), the situation becomes more complicated and two relaxation processes are recorded from the initial exposure period.
For multilayer composite coatings containing spatially separated layers with active and inert fillers, three characteristic relaxation times are identified on a corroding steel substrate. This is in accordance with the model of multiphase layered bulk-filled polymer composites and justifies the use of additive Voit ES.
Digital models of the evolution of electrochemical properties for all the studied systems were proposed, including inert layers on steel and platinum, thin and multilayer Zn–filled primer layers and multilayer coatings of the listed materials at different temperatures in chloride media. The obtained results also allow us to propose a method of non-destructive EIS control of physico-chemical and corrosion processes in composite polymer protective coatings at different stages of exposure in aggressive environments.
About the Authors
V. A. GolovinRussian Federation
S. A. Dobriyan
Russian Federation
References
1. ISO 12944-5. ЛАКИ И КРАСКИ. Защита от коррозии стальных конструкций системами защитных покрытий. Часть 5: Комбинации защитных красок.
2. V.A. Golovin and S.A. Dobriyan, Effects of adaptation and self-healing of protective polymer coatings in corrosive media, Int. J. Corros. Scale Inhib., 2022, 11, no. 2, 705–726. doi: 10.17675/2305-6894-2022-11-2-18 3. V.A. Golovin, S.A. Dobriyan and A.K. Buryak, Polymer coatings’ long-term adaptation and self-healing effects in corrosive media, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1172–1190. doi: 10.17675/2305-6894-2022-11-3-16
3. J.H.W. de Wit, D.H. van der Weijde, G. Ferrari, Organic coatings of corrosion mechanisms in theory and practice, second edition, Marcel, Dekker, 2002, 19, 768 р. doi: 10.1201/9780203909188 5. Т.Н. Останина, Электрохимическое поведение и физико-химические свойства металлонаполненных покрытий, диссертация на соискание степени д.х.н. по специальности 02.00.05 – электрохимия, Екатеринбург, 2003, 226 с.
4. V.A. Golovin., S.A. Dobriyan, V.A. Shchelkov and A.I. Shcherbakov, Electrochemical properties of Zn-rich primers and composite coatings on various metal substrates, Int. J. Corros. Scale Inhib., 2020, 6, no. 4, 56–73. doi: 10.17675/2305-6894-2020-9-1-4
5. A. Meroufela and S. Touzain, EIS characterization of new Zinc-rich powder coatings. Prog. Org. Coat., 2007, 59, no. 3, 197–205. doi: 10.1016/j.porgcoat.2006.09.005
6. J.R. Vilche, E.C. Bucharsky and C.A. Giudice, Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel, Corros. Sci., 2002, 44, no. 6, 1287–1309. doi: https://doi.org/10.1016/S0010-938X(01)00144-5
7. K.T. Ulrich and S.D. Eppinger, Product Design and Development, Irwin Mc Graw-Hill, 2000, 358p.
8. Е.И. Яблочников и Д.Д. Куликов, Моделирование приборов, систем и производственных процессов, ИТМО, Санкт-Петербург, 2008, 153 с.
9. X. Liu, J. Xiong, Y. Lv and Y. Zuo, Study on corrosion electrochemical behavior of several different coating systems by EIS, Prog. Org. Coat., 2009, 64, no. 4, 497–503. doi: 10.1016/j.porgcoat.2008.08.012
10. S. Shreepathi, A.K. Guin, S.M. Naik and M.R. Vattipalli, Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life, J. Coat. Technol. Res., 2011, 8, no. 2, 191–200. doi: 10.1007/s11998-010-9299-5
11. F. Brambilla, E. Campazzi, D. Sinolli, P-J Lathiere, etc. Accelerated corrosion testing: a predictive tool, Theses of The Annual Congress of the European Federation of Corrosion EUROCORR, Cracow, Poland, 120935, 2018.
12. Н.А. Поклонский и Н.И. Горбачук, Основы импедансной спектроскопии композитов, Мн.: БГУ, 2005, 130 с.
13. ISO 16773(1–4), Electrochemical impedance spectroscopy (EIS) on high – impedance coated specimens, 2009. doi: 10.3403/BSENISO16773
14. V.A. Golovin, S.A. Dobriyan and V.E. Kasatkin, Spectroscopy of electrochemical impedance (EIS) of composite polymer coatings on metal substrates, Int. J. Corros. Scale Inhib., 2018, 7, no. 4, 697–709. doi: 10.17675/2305-6894-2018-7-4-15
15. F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coating, J. Appl. Electrochem., 1995, 25, 187–202.
16. Р. Vertuest, Anti-corrosion properties оf zinc powder paints using nano zinc metal powder, China Coatings Journal, 2009, July, 24–36.
17. V.A. Golovin, A.B. Il’in, A.D. Aliev and V.A. Rabinkov, Mass transfer of phosphoruscontaining corrosion inhibitors in epoxy protective coatings. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, no. 7, 1–7. doi: 10.1134/S2070205119070050
18. Защита от коррозии, старения и биоповреждений машин, оборудования и сооружений: Справочник: В 2 т. Т. 2, Под ред. А.А. Герасименко, М.: Машиностроение, 1987, 784 с.
Review
For citations:
Golovin V.A., Dobriyan S.A. Evolution of electrochemical properties and digital modeling of composite polymer protective coatings in aggressive environments. Title in english. 2023;(2):97-120. (In Russ.)