Preview

Title in english

Advanced search

Protection of metals from corrosion in the vapor phase. Overview. Part 2. Chamber corrosion inhibitors

Abstract

This publication continues the review of the literature on the vapor-phase protection of metals by inhibitors. The main attention is paid to inhibitors that are capable of irreversible adsorption on the surface and, owing to this, possess an anticorrosive aftereffect. The specific features of the so-called chamber protection of metals are analyzed, namely, protection is performed by short-term treatment of items in a closed space (chamber) at elevated temperature in vapors of inhibitors that are low-volatile under normal conditions. It is shown that chamber treatment is a promising method for temporary protection of metals that has significant advantages over traditional vapor-phase protection with volatile inhibitors. It is found that an elevated temperature in the chamber not only provides sufficient volatility of inhibitors for vapor phase protection but also favors their chemisorption.

About the Authors

Yu. I. Kuznetsov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



N. N. Andreev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



References

1. Ю.И. Кузнецов и Н.Н. Андреев, Защита металлов от коррозии в парогазовой фазе. Обзор. Ч.1. Летучие ингибиторы коррозии, Коррозия: защита материалов и методы исследований, 2023, nо 1, 1–15.

2. И.Л. Розенфельд и В.П. Персианцева, Ингибиторы атмосферной коррозии, М.: Наука, 1985, 277 с.

3. P.D. Donovan, Protection of Metals from Corrosion in Storage and Transit, Chichester, Ellis Horwood Limited, 1986, 228 p.

4. Химическая энциклопедия, М.: Научное изд-во: «Большая химическая энциклопедия» 1998, 5, 564 с.

5. Б. Трепнел, Хемосорбция, М.: Изд-во иностр. лит-ры, 1958, 326 с.

6. A. Kokalj, Corrosion inhibitors: physisorbed or chemisorbed?, Corros. Sci., 2022, 196, 109939. doi: 10.1016/j.corsci.2021.109939

7. M.M. Antonijevic and M.B. Petrovic, Copper corrosion inhibitors. A review, Int. J. Electrochem. Sci., 2008, nо 1, 1–28. doi: 10.1016/S1452-3981(23)15441-1

8. W. Durnie, R. De Marco, A. Jefferson and B. Kinsella, Development of a structure‐activity relationship for oil field corrosion inhibitors, J. Electrochem. Soc., 1999, 146, no 5, 1751. doi: 10.1149/1.1391837

9. S.H. Zaferani, M. Sharifi, D. Zaarei and M.R. Shishesaz, Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes –A review, J. Environ. Chem. Eng., 2013, 1, no 4, 652–657. doi: 10.1016/j.jece.2013.09.019

10. P. Wang, J. Cai, X. Cheng, L. Ma, Y. Yang, X. Xia and X. Li, Fabrication of chemisorbed film on ultrafine–grained steels for corrosion inhibition in saline solution, Thin Solid Films, 2023, 766, 139657. doi: 10.1016/j.tsf.2022.139657

11. W. Machu, Über die bedeutung von filmwiderständen, polarisationen und kapazitäten für den reactions mechanismus voninhibitoren, Symposium Europeen sur les Inhibiteurs de Corrosion, Ferrara, 1961, 183–203.

12. C. Fiaud, Theory and practice of vapour phase inhibitors, In: Working Party Report on Corrosion Inhibitors, The Institute of Materials: London, 1994, 1–11.

13. A. Subramanian, M. Natesan, V.S.Muralidharan, К. Balakrishnan and N Vasudevan, An Overview: Vapor Phase Corrosion Inhibitors, Corrosion, 2000, 144–155.

14. D.M. Bastidas, E. Cano and E.M. Mora, Volatile corrosion inhibitors: a review, AntiCorros. Meth. Mater. 2005, 52, 71–77. doi: 10.1108/00035590510584771

15. A.I. Altsybeeva, V.V. Burlov, N.S. Fedorova, T.M. Kuzinova and G.F. Palatik, Volatile inhibitors of atmospheric corrosion of ferrous and nonferrous metals. I. Physical and chemical aspects of selection of starting reagents and synthetic routes, Int. J. Corros. Scale Inhib., 2012, 1, no. 1, 51–64. doi: 10.17675/2305-6894-2012-1-1-051-064

16. A.I. Altsybeeva, V.V. Burlov, N.S. Fedorova, T.M. Kuzinova and G. F. Palatik. Volatile inhibitors of atmospheric corrosion of ferrous and nonferrous metals. II, Int. J. Corros. Scale Inhib., 2012, 1, no. 2, 99–106. doi: 10.17675/2305-6894-2012-1-2-099-106

17. F.A. Ansari, C. Verma, Y.S. Siddiqui, E.E. Ebenso and MA. Quraishi, Volatile corrosion inhibitors for ferrous and non–ferrous metals and alloys: a review, Int. J. Corros. Scale Inhib., 2018, 7, no. 2, 126–150. doi: 10.17675/2305-6894-2018-7-2-2

18. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Beltran, Technological applications of volatile corrosion inhibitors, Corros. Rev., 2018, 36, no. 3 227–238. doi: 10.1515/corrrev-2017-0102

19. S. Gangopadhyay and P.A. Mahanwar, Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review, J. Coat. Technol. Res., 2018, 15, 789–807. doi: 10.1007/s11998-017-0015-6

20. Yu.I Kuznetsov, The Role of irreversible adsorption in the protective action of volatile corrosion inhibitors, Corrosion-98, NACE, Houston, San Diego, 1998, paper no. 242.

21. Н.П. Андреева, А.М. Дорфман, Ю.И. Кузнецов и А.М. Ляхович, Об адсорбции летучего ингибитора коррозии N,N-диэтиламинопропионитрила на железе, Защита металлов, 1996, 32, no. 4, 403–406.

22. I.L. Rozenfeld́, V.P. Persiantseva, M.N. Polteva, P.B. and Terentyev, Investigation of the mechanism of protection of metals from corrosion by the means of volatile inhibitors, In Proceed. of I Eur. Sympos. on Corros. and Scale Inhib.; Univ. Ferrara: Italy, 1961, 329.

23. П.А. Акользин. Коррозия и защита металла теплоэнергетического оборудования. М.: Энергоиздат, 1982, 304 с.

24. А.П. Акользин. Противокоррозионная защита стали пленкообразователями. 1989. М.: Металлургия, 1989, 192 с.

25. Ю.И. Кузнецов, Н.Н. Андреев, О.А. Гончарова и А. В. Агафонкин. О защите металлов от коррозии при конденсации на них влаги летучими ингибиторами. Коррозия: материалы, защита, 2009, no 10, 25–29.

26. А.Ю. Лучкин, О.А. Гончарова, Н.Н. Андреев и Ю.И. Кузнецов, Защита стали обработкой парами октадециламина, 1,2,3-бензотриазола и их смеси при повышенной температуре, Коррозия: материалы, защита, 2017, no 12, 20–26.

27. O.A. Goncharova, Yu.I. Kuznetsov, N.N. Andreev, A.Yu. Luchkin, N.P. Andreeva and D.S. Kuznetsov, A new corrosion inhibitor for zinc chamber treatment, Int. J. Corros. Scale Inhib., 2018, no 3, 340–351. doi:10.17675/2305-6894-2018-7-3-5

28. O.A. Goncharova, N.N. Andreev, A.Yu. Luchkin, Yu.I. Kuznetsov, N.P. Andreeva and S.S. Vesely, Protection of copper by treatment with hot vapors of octadecylamine, 1,2,3- benzotriazole, and their mixtures, Mater. Corros., 2019, 70, no 1, 161–168. doi:10.1002/maco.201810366

29. O.A. Goncharova, A.Yu. Luchkin, N.N. Andreev, Yu.I. Kuznetsov and N.P. Andreeva, Chamber protection of copper from atmospheric corrosion by compounds of the triazole class, Prot. Met. Phys. Chem. Surf., 2020, 56, 1276–1284. doi:10.1134/S2070205120070072

30. A.T. Simonović, Ž.Z. Tasić, M.B. Radovanović, M.B. Petrović Mihajlović and M.M. Antonijević, Influence of 5-chlorobenzotriazole on inhibition of copper corrosion in acid rain solution, ACS Omega, 2020, 5, no 22, 12832–12841. doi: 10.1021/acsomega.0c00553

31. A.Yu. Luchkin, O.A. Goncharova, I.A. Arkhipushkin, N.N. Andreev and Yu.I. Kuznetsov, The effect of oxide and adsorption layers formed in 5-chlorobenzotriazole vapors on the corrosion resistance of copper, J. Taiwan Inst. Chem. Eng., 2020, 117, 231–241. doi: 10.1016/j.jtice.2020.12.005

32. O.A. Goncharova, D.S. Kuznetsov, N.N. Andreev, Yu.I. Kuznetsov and N.P. Andreeva, Chamber inhibitors of corrosion of AMg6 aluminum alloy, Prot. Met. Phys. Chem. Surf., 2020, 56, 1293–1299. doi: 10.1134/S2070205120070072

33. H.L. Zhang, D.Q. Zhang, L.X. Gao, Y.Y. Liu, H.B. Yan, S.L. Wei, T.F. Ma, Vapor phase assembly of benzotriazole and octadecylaminecomplex films on aluminum alloy surface, J. Coat. Technol. Res., 2021, 18, 435–446. doi: 10.1007/s11998-020-00405-5

34. O.A. Goncharova, N.N. Andreev, L.P. Kazansky, I.A. Arkhipushkin, Yu.I. Kuznetsov, N.P. Andreeva and S.S. Vesely, 5-chloro-1,2,3-benzotriazole as a chamber corrosion inhibitor for the MA8 magnesium alloy, Prot. Met. Phys. Chem. Surf., 2021, 57, 1319–1327 doi: 10.1134/S2070205121070108

35. Патент 2736196, RU, IPC C23F15/00; C23F17/00, Камерный ингибитор коррозии, Патентообладатель: Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ РАН) (RU), Опубликовано: 12.11.2020, Бюл. 32.

36. Патент 2741028, RU, IPC C23F15/00; C23F17/00, Способ обработки поверхностей металлов с многомодальной шероховатостью для придания им супергидрофобности и антикоррозионных свойств, Патентообладатель: Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ РАН) (RU), Опубликовано: 22.01.2021, Бюл. 3.

37. Патент 2759721, RU, IPC C23F11/02, Камерный ингибитор коррозии черных и цветных металлов, Патентообладатель: Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ РАН) (RU), Опубликовано: 17.11.2021, Бюл. 2.

38. T. Ishizaki, M. Okido, Y. Masuda, N. Saito and M. Sakamoto, Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor–phase method, Langmuir, 2011, 27, 6009–6017. doi: 10.1021/la200122x

39. K.A. Emelyanenko, A.G. Domantovsky, E.V. Chulkova, A.M. Emelyanenko and L.B. Boinovich, Thermally induced gradient of properties on a superhydrophobic magnesium alloy surface, Metals, 2021, 11(1), no 41, 41–55. doi: 10.3390/met11010041


Review

For citations:


Kuznetsov Yu.I., Andreev N.N. Protection of metals from corrosion in the vapor phase. Overview. Part 2. Chamber corrosion inhibitors. Title in english. 2023;(3):1-16. (In Russ.)

Views: 234


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.