Improved hydrophobicity for better corrosion control by special self–assembled molecular coatings
https://doi.org/10.61852/2949-3412-2023-1-4-63-88
Abstract
The aim of this work was to prepare protective films of alkenyl phosphonic acid (APC) in self–assembled molecular layer (SAM) on different metals in order to improve the corrosion resistance of steals surfaces.
The influence of the alloy composition as well as the condition of layer formation and its post–treatment was in the focus of the work in order to prepare compact nanofilm that can control the metal corrosion in chloride ion environment. The influence of layer formation parameters on the layer compactness and on the corrosion resistance were characterized by water contact angle values, by atomic force microscopy (AFM) as well as by roughness parameters. In order to increase the compactness of the APC–SAM layer the nanofilms were heat treated at different temperatures and time intervals. The change in the layer characteristics caused by deposition temperature and by the post–treatments was demonstrated by wet contact angles and by AFM. The increased anticorrosion effect caused by the proper preparation conditions, by post–treatments as well as by the metal composition was characterized by the change in the roughness parameters as well as in the morphology visualized by AFM. The results showed that the increased anticorrosion activity of the compact nanolayers is due to blocking the active area on the metal surface by forming barrier between the aggressive environment and the metal surface.
About the Authors
É. K. PfeiferHungary
Institute of Material and Mechanical Engineering
8200
Egyetem Str 10
Veszprém
J. Telegdi
Hungary
Institute of Materials and Environmental Chemistry
Department of Functional and Structural Materials
Faculty of Light Industry and Environmental Engineering
1117
Magyar tudósok körútja 2
Budapest
References
1. K. Marusic, Z. Hajdari and H. Otmacic Curkovic, Optimizing the Preparation Procedure of Self-assembled Monolayer of Stearic Acid for Protection of Cupronickel Alloy, Acta Chim. Slov., 2014, 61, 328–339.
2. A.M.A. Mohamed, A.M. Abdullah and N.A. Younan, Corrosion behavior of superhydrophobic surfaces: A review, The Arabian Journal of Chemistry, 2014, 8, 749– 765. doi: 10.1016/j.arabjc.2014.03.006.
3. J.T. Simpson, S.R. Hunter and T. Aytug, Superhydrophobic materials and coatings : a review, Rep. Prog. Phys., 2015, 78, no. 8, 086501. doi: 10.1088/0034-4885/78/8/086501.
4. A. Fihri, E. Bovero, A. Al–Shahrani, A. Al–Ghamdi and G. Alabedi, Recent progress in superhydrophobic coatings used for steel protection: A review, Colloids Surf. A: Physicochemical and Engineering Aspects, 2017, 520, 378–390. doi: 10.1016/j.colsurfa.2016.12.057.
5. G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, J. Coat. Technol. Res., 2018, 15, 231–250.
6. J. Telegdi, T. Rigó, J. Beczner and E. Kálmán, Influence of Langmuir–Blodgett nanolayers on microbial adhesion, Surf. Eng., 2005, 21, no. 2, 107–112. doi: 10.1179/174329305X23245.
7. L. Románszki, I. Datsenko, J. Telegdi, L. Nyikos and W. Sand, Self–assembled and dipcoated nanolayers as anti–biofouling protective coatings on copper, copper alloys, and stainless steel, Proc. Int. Congr. Mar. Corros. Fouling, Toulon, France, 19–24 June 2016, 252.
8. T. Abohalkuma, A. Shaban and J. Telegdi, Corrosion Processes Controlled by Phosphonic Acid Nano-layers, Period. Polytech., Chem. Eng., 2016, 60, 165. doi: 10.3311/PPch.8260.
9. J. Deng, P. Pang, Ch. Wang and T. Ren, Biotribological properties of Ti–6Al–4V alloy treated with self–assembly multi–walled carbon nanotube coating, Surf. Coat. Technol., 2020, 382, 125169. doi: 10.1016/j.surfcoat.2019.125169.
10. A. Heijink, J. Schwartz, M.E. Zobitz, K.N. Crowder, G.E. Lutz and J.D. Sibonga, Selfassembled Monolayer Films of Phosphonates for Bonding RGD to Titanium, Clin. Orthop. Relat. Res., 2008, 466, 977–984. doi: 10.1007/s11999-008-0117-7.
11. R.P. Zhao, S. Rupper and S. Gaan, Recent Development in Phosphonic Acid Based Organic Coatings on Aluminum, Coatings, 2017, 7, no. 89, 133. doi: 10.3390/coatings7090133.
12. W. Zhao, M. Göthelid, S. Hosseinpour, M. Johansson, G. Li, C. Leygraf and C.M. Johnson, The nature of self–assembled octadecylphosphonic acid (ODPA) layers on copper substrates, J. Colloid Interface Sci., 2021, 581, 816–825. doi: 10.1016/j.jcis.2020.07.058.
13. R.W. Murray, Chemically modified electrodes, Acc. Chem. Res., 1980, 13, 135–141. doi: 10.1021/ar50149a002.
14. R. Nuzzo, D. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc., 1983, 105, 4481–4483 doi: 10.1021/ja00351a063.
15. G.K. Jennings, P.E. Laibinis, Self–assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments, Colloids Surf. A: Physicochemical and Engineering Aspects, 1996, 116, 105–114. doi: 10.20964/2019.05.28.
16. A. Ulman, Part four–Modeling of Monolayers, in: An Introduction to Ultrathin Organic Films, Academic Press, 1991, 305–338. doi: 10.1016/B978-0-08-092631-5.50011-7.
17. A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533–1554. doi: 10.1021/cr9502357.
18. J.J. Gooding, F. Mearns, W. Yang and J. Liu, Self–assembled monolayers into the 21<sup>st</sup> Century: recent advances and applications, Electroanalysis, 2003, 15, 81–96. doi: 10.1002/elan.200390017.
19. C. Love, L. Estroff, J. Kriebel, R.G. Nuzzo and G.M. Whitesides, Self–assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev., 2005, 105, 1103–1170. doi: 10.1021/cr0300789.
20. J.Telegdi, T. Rigó and E. Kálmán, Molecular layers of hydroxamic acids in copper corrosion inhibition, J. Electroanal. Chem., 2005, 582, 191–201. doi: 10.1016/j.jelechem.2005.03.045.
21. G.M. Whitesides, J.K. Kriebel and B.T. Mayers, Self–assembly and nanostructured materials, Nanostructure Science and Technology, W.T.S. Huck (Ed.), Springer US, 2005, 217–239. URL: https://www.researchgate.net/publication/303166480_Self_assembly_and_nanostructures_nanostructure_science_and_technology.
22. J. Telegdi, H. Otmačić, K. Tadic, F. Al–Taher, E. Stupnišek–Lisac and E. Kálmán, Inibition of copper corrosion by self-assembled amphiphiles, Chem. and Biochem. Eng. Q., 2007, 21, 77–82.
23. J. Telegdi, T. Rigó, É. Pfeifer, T. Keszthelyi and E. Kálmán, Nanolayer coatings, Prog. Colloid Polym. Sci., 2008, 135, 77–86. doi: 10.1007/2882_2008_098.
24. C. Vericat, M.E. Vela, G. Corthey, E. Pensa, E. Cortés, M.H. Fonticelli, F. Ibanez, G.E. Benitez, P. Carro and R.C. Salvarezza, Self-assembled monolayers of thiolates on metals : a review article on sulfur–metal chemistry and surface structures, RSC Adv., 2014, 4, 27730–27754. doi: 10.1039/C4RA04659E.
25. T. Abohalkuma, F. Shawish and J. Telegdi, Phosphonic acid derivatives in self assembled layers against metal corrosion, Int. J. Corros. Scale Inhib., 2014, 3, 151–159. doi: 10.17675/2305-6894-2014-3-3-151-159.
26. T. Abohalkuma, J. Telegdi, Corrosion protection of carbon steel by special phosphonic acid nano–layers, Mater. Corros., 2015, 66, no. 12, 1382–1390. doi: 10.1002/maco.201508792.
27. J. Telegdi, G. Luciano, S. Mahantry and T. Abohalkuma, Inhibition of aluminum alloy corrosion in electrolytes by self–assembled fluorophosphonic acid molecular layer, Mater. Corros., 2016, 67, no. 10, 1027–1033.
28. J. Telegdi T. Abohalkuma, Influence of the nanolayer post-treatment on the anticorrosion activity, Int. J. Corros. Scale Inhib., 2018, 7, no. 3, 352–365. doi: 10.17675/2305-6894-2018-7-3-6.
29. J. Telegdi, Formation of self-assembled anticorrosion films on different metals, Materials, 2020, 13, no. 5089, 1–25. doi: 10.3390/ma13225089.
30. É. Kocsisné Pfeifer, J. Telegdi and I.G. Gyurika, The effect of heating on the anticorrosive self–assembled phosphonic acid nanolayers, Proceedings of the 6<sup>th</sup> World Congress on Mechanical, Chemical, and Material Engineering (MCM'20) Prague, Czech Republic Virtual Conference, August, 2020, no. MMME 123, 1–6. doi: 10.11159/mmme20.123.
31. D. Geldof, M. Tassi, R. Carleer, P. Adriaensens, A. Roevens, V. Meynen and F. Blockhuys, Binding modes of phosphonic acid derivatives adsorbed on TiO<sub>2</sub> surfaces: Assignments of experimental IR and NMR spectra based on DFT/PBC calculations, Surf. Sci., 2017, 655, 31–38. doi: 10.1016/j.susc.2016.09.001.
32. J.D. Hartgerink, E. Beniash and S. Stupp, Self–assembly and Mineralization of Peptide–Amphiphile Nanofibers, Science, 2001, 294, 1684–1688. doi: 10.1126/science.1063187.
33. T. Nakamoto, M. Katada, K. Endo, H. Sano, Structure of Fe<sub>3</sub>O complexes with long alkyl chain fatty acid, [Fe<sub>3</sub>O(O<sub>2</sub>CC<sub>n</sub>H<sub>2n+1</sub>)6L<sub>3</sub>]NO3 (L=H<sub>2</sub>O, n=11, 13, 15, 17; L=py, n=13, 15, 17); crystal structure of [Fe<sub>3</sub>O(O2CC<sub>13</sub>H<sub>27</sub>)6(py)<sub>3</sub>]NO, Polyhedron, 1998, 17, 3507–3514.
34. S. Valiyaveettil, V. Enkelmann and K. Müllen. Supramolecular structures formed from hydrogen-bonded networks of 5–alkoxyisophthalic acid, J. Chem. Soc., Chem. Commun., 1994, 18, 2097. doi: 10.1039/c39940002097.
35. K.J.M. Bishop, C.E. Wilmer, S. Soh and B.A. Grzybowski, Nanoscale forces and their uses in self–assembly, Small, 2009, 5, 1600–1630. doi: 10.1002/smll.200900358.
36. E. Hoque, J.A. DeRose, B. Bhushan and K.W. Hipps, Low adhesion, non–wetting phosphonate self–assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy, 2009, 109, 1015–1022. doi: 10.1016/j.ultramic.2009.03.033.
37. A. Raman, R. Quiñones, L. Barriger, R. Eastman, A. Parsi and E.S. Gawalt, Understanding organic film behavior on alloy and metal oxides, Langmuir, 2010, 26, 1747–1754. doi: 10.1021/la904120s.
38. T. Abohalkuma, A. Shaban and J. Telegdi, Corrosion Processes Controlled by Phosphonic Acid Nano–layers, Period. Polytech. Chem. Eng., 2018, 60, no. 3, 165–168. doi: 10.3311/PPch.8260.
39. J. Telegdi, T. Szabó, L. Románszki and M. Pávai, Chapter 7(20): The use of nano–microlayers, self–healing and slow–release coatings to prevent corrosion and biofouling, in Mekhlou ASH (szerk.), Handbook of smart coatings for materials protection. Cambridge: Woodhead Publishing Series in Metals and Surface Engineering, 2014, 64, 135–182. doi: 10.1533/9780857096883.2.135.
40. S.C. D’Andrea, A.Y. Fadeev, Covalent surface modification of calcium hydroxyapatite usingn alkyl and fluoroalkylphosphonic acids, Langmuir, 2003, 19, 7904–7910. doi: 10.1021/LA027000S.
41. R. Luschtinetz, A.F. Oliveira, J. Frenzel, J.O. Joswig, G. Seifert and H.A. Duarte, Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces, Surf. Sci., 2008, 602, 1347–1359. doi: 10.1016/J.SUSC.2008.01.035.
42. R. Quiñones, A. Raman and E.S. Gawalt, Functionalization of nickel oxide using alkyl phosphonic acid self-assembled monolayers, Thin Solid Films, 2008, 516, 8774–8781. doi: 10.1016/J.TSF.2008.06.055.
43. T. Vallant, H. Brunner, U. Mayer and H. Hoffmann, Control of structural order in selfassembled zirconium alkyl phosphonate films, Langmuir, 1998, 14, 5826–5833. doi: 10.1021/LA980462E.
44. T.T. Foster, M.R. Alexander, G.J. Leggett and E. McAlpine, Friction force microscopy of alkyl phosphonic acid and carboxylic acids adsorbed on the native oxide of aluminum, Langmuir, 2006, 22, 9254–9259. doi: 10.1021/LA061082T.
45. E.S. Gawalt, M.J. Avaltroni, N. Koch and J. Schwartz, Self–assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium, Langmuir, 2001, 17, 5736–5738. doi: 10.1021/LA010649X.
46. T. Onda, S. Shibuichi, N. Satoh and K. Tsuji, Supe–Water–Repellent Fractal Surfaces, Langmuir, 1996, 12, 2125–2127. doi: 10.1021/LA950418O.
47. Y.L. Jeyachandran, M.A. Zharnikov, Comprehensive analysis of the effect of electron irradiation on oligo (ethylene glycol) terminated self–assembled monolayers applicable for specific and non–specific patterning of proteins, J. Phys. Chem. C, 2012, 116, 14950–14959. doi: 10.1021/jp303764h.
48. Y. Tai, A. Shaporenko, H. Noda, M. Grunze and M. Zharnikov, Fabrication of a stable metal film on the surface of self–assembled monolayers, Adv. Mater., 2005, 17, 1745–1749. doi: 10.1002/adma.200500464.
49. F. Chesneau, A. Terfort and M. Zharnikov, Nickel deposition on fluorinated, aromatic self–assembled monolayers: chemically induced cross–linking as a tool for the preparation of well–defined top metal films, J. Phys. Chem. C, 2014, 118, 11763–11773. doi: 10.1021/JP5025334.
50. K. Marušić, N. Matijaković Mlinarić and F. Mihaljevic, Influence of gamma irradiation on a fatty acid self–assembling coating of copper, J. Electrochem. Soc., 2018, 165, no. 16, 973–979. doi: 10.1149/2.1301814jes.
51. X. Wan, I. Lieberman, A. Asyuda, S. Resch, H. Seim, P. Kirsch and M. Zharnikov, Thermal stability of phosphonic acid self–assembled monolayers on alumina substrates, J. Phys. Chem. C, 2020, 124, 2531–2542. doi: 10.1021/acs.jpcc.9b10628.
52. E.K. Mioč, Z.H. Gretić and H.O. Ćurković, Modification of cupronickel alloy surface with octadecylphosphonic acid self–assembled films for improved corrosion resistance, Corros. Sci., 2018, 134, 189–198. doi: 10.1016/j.corsci.2018.02.021.
53. B. Arrotin, J. Delhalle, P. Dubois, L. Mespouille and Z. Mekhalif, Electroassisted functionalization of nitinol surface, a powerful strategy for polymer coating through controlled radical surface initiation, Langmuir, 2017, 33, 2977–2985. doi: 10.1021/acs.langmuir.6b04536.
54. P. Marcus (Ed.), Corrosion Mechanisms in Theory and Practice, 3<sup>rd</sup> ed., 2017; CRC Press: Boca Raton, FL, USA; ISBN209781138073630
55. A. Shaban, Gy. Vastag and J. Telegdi, Corrosion Inhibitors, Ch. 2. Metal corrosion and its inhibition mechanisms: an overview. doi: 10.52305/PYBG4044.
56. Y. Tsutsumi, A. Nishikata and T. Tsuru, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solution, Corros. Sci., 2007, 49, 1394–1407. doi: 10.1016/j.corsci.2006.08.016.
57. Y.I. Kuznetsov, Organic corrosion inhibitors: Where are we now? A review. Part IV. Passivation and the role of mono- and diphosphonates, Int. J. Corros. Scale inhib., 2017, 6, no. 4, 384–427. doi: 10.17675/2305-6894-2017-6-4-3.
58. P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei and A.A. Rahim, Reviews on Corrosion Inhibitors: A Short View, Chem. Eng. Commun., 2016, 203, no. 9, 1145–1156. doi: 10.1080/00986445.2016.1172485.
59. E. Kálmán, I. Felhősi, F.H. Kármán, I. Lukovits, J. Telegdi and G. Pálinkás, Environmetally friendly corrosion inhibitors, Mater. Sci. Technol.; A Comprehensive Treatment, Corrosion and Environmetal Degradation, Wiley–VCH (Edited by R.W. Chan, P. Haasen, E.J. Kramer), 2000, 1, 471–537. doi: 10.1002/9783527619306.ch9.
60. H. Otmačić, J. Telegdi, K. Papp and E. Stupniše–Lisac, Protective properties of an inhibitor layer formed on copper in neutral chloride solution, J. Appl. Electrochem., 2004, 34, no. 5, 545–550. doi: 10.1023/B:JACH.0000021873.30314.eb.
61. J. Telegdi, J. Beczner, N–Substituted amino acids as multifunctional additives used in cooling water. Part I: N–Hydroximethyl amino acids, Int. J. Corros. Scale Inhib., 2014, 3, no. 3, 167–176. doi: 10.17675/2305-6894-2014-3-3-167-176.
62. J. Telegdi, N–Substituted amino acids as multifunctional additives used in cooling water. Part II: N–Carboxymethyl and phosphonomethyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 2, 183–189. doi: 10.17675/2305-6894-2016-5-2-7.
63. J. Telegdi, N–Substituted amino acids as anticorrosion additives. Part III: N–Acyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 3, 263–272. doi: 10.17675/2305-6894-2016-5-3-6.
64. J. Telegdi, N–Substituted unusual amino acids as corrosion inhibitors. Part IV: N–Acyl derivatives of unnatural amino acids with double bond, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 360–366. doi: 10.17675/2305-6894-2016-5-4-6.
65. C. Monticelli, Corrosion Inhibitors; in Surface Science and Electrochemistry, Encycl. Interfacial Chem., 2018, 164–171.
66. B.N. Popov, Corrosion Engineering; Principles and Solved Problems, Corros. Inhib., 2015, 14, 581–597. doi: 10.1016/B978-0-444-62722-3.00014-8.
67. L. Románszki, M. Mohos, J. Telegdi, Zs. Keresztes and L. Nyikos, A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method, Period. Polytech. Chem. Eng., 2014, 58, 53–59. doi: 10.3311/PPch.7188, link.
68. J. Telegdi, Inhibition of microbiologically influenced corrosion by dissolved additives, and by specific nanolayers, DSc Thesis, 2009.
69. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 2002, 123, 133–145.
70. J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling; a review, Biofouling, 2006, 22, 339. doi: 10.1080/08927010600980223.
71. N.J. Shirtcliffe, G. McHale, S. Atherton and M.I. Newton, An introduction to superhydrophobicity, Adv. Colloid Interface Sci., 2010, 161, 124. doi: 10.1016/j.cis.2009.11.001.
Review
For citations:
Pfeifer É.K., Telegdi J. Improved hydrophobicity for better corrosion control by special self–assembled molecular coatings. Title in english. 2023;(4):63-88. (In Russ.) https://doi.org/10.61852/2949-3412-2023-1-4-63-88