Улучшенная гидрофобность для лучшего контроля коррозии за счет специальных самоорганизующихся молекулярных покрытий
https://doi.org/10.61852/2949-3412-2023-1-4-63-88
Аннотация
Целью данной работы было получение защитных пленок алкенилфосфоновой кислоты (АПК) в самоорганизующемся молекулярном слое (SАМ) на различных металлах с целью повышения коррозионной стойкости стальных поверхностей.
В центре внимания работы было влияние состава сплава, а также условий формирования слоя и его последующей обработки с целью получения компактной нанопленки, способной контролировать коррозию металла в среде хлорид–ионов. Влияние параметров формирования слоя на его компактность и коррозионную стойкость характеризовали значениями угла смачивания водой, методами атомно–силовой микроскопии (АСМ), а также параметрами шероховатости. Для повышения компактности слоя АПК–САМ нанопленки подвергались термообработке при различных температурах и интервалах времени. Изменение характеристик слоя, вызванное температурой осаждения и последующей обработкой, было продемонстрировано с помощью углов смачивания влажных материалов и с помощью АСМ. Повышенный антикоррозионный эффект, вызванный правильными условиями подготовки, последующей обработкой, а также составом металла, характеризовался изменением параметров шероховатости, а также морфологии, визуализируемой методом АСМ. Результаты показали, что повышенная антикоррозионная активность компактных нанослоев обусловлена блокировкой активной зоны на поверхности металла за счет формирования барьера между агрессивной средой и поверхностью металла.
Об авторах
Э. К. ПфайферВенгрия
Институт материаловедения и машиностроения
кафедра Функциональных и конструкционных материалов
8200
ул. Эгиетем 10
Веспрем
Ю. Телегди
Венгрия
Институт химии материалов и окружающей среды
Исследовательский центр естественных наук
факультет легкой промышленности и экологической
инженерии
1117
Будапешт
Список литературы
1. K. Marusic, Z. Hajdari and H. Otmacic Curkovic, Optimizing the Preparation Procedure of Self-assembled Monolayer of Stearic Acid for Protection of Cupronickel Alloy, Acta Chim. Slov., 2014, 61, 328–339.
2. A.M.A. Mohamed, A.M. Abdullah and N.A. Younan, Corrosion behavior of superhydrophobic surfaces: A review, The Arabian Journal of Chemistry, 2014, 8, 749– 765. doi: 10.1016/j.arabjc.2014.03.006.
3. J.T. Simpson, S.R. Hunter and T. Aytug, Superhydrophobic materials and coatings : a review, Rep. Prog. Phys., 2015, 78, no. 8, 086501. doi: 10.1088/0034-4885/78/8/086501.
4. A. Fihri, E. Bovero, A. Al–Shahrani, A. Al–Ghamdi and G. Alabedi, Recent progress in superhydrophobic coatings used for steel protection: A review, Colloids Surf. A: Physicochemical and Engineering Aspects, 2017, 520, 378–390. doi: 10.1016/j.colsurfa.2016.12.057.
5. G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, J. Coat. Technol. Res., 2018, 15, 231–250.
6. J. Telegdi, T. Rigó, J. Beczner and E. Kálmán, Influence of Langmuir–Blodgett nanolayers on microbial adhesion, Surf. Eng., 2005, 21, no. 2, 107–112. doi: 10.1179/174329305X23245.
7. L. Románszki, I. Datsenko, J. Telegdi, L. Nyikos and W. Sand, Self–assembled and dipcoated nanolayers as anti–biofouling protective coatings on copper, copper alloys, and stainless steel, Proc. Int. Congr. Mar. Corros. Fouling, Toulon, France, 19–24 June 2016, 252.
8. T. Abohalkuma, A. Shaban and J. Telegdi, Corrosion Processes Controlled by Phosphonic Acid Nano-layers, Period. Polytech., Chem. Eng., 2016, 60, 165. doi: 10.3311/PPch.8260.
9. J. Deng, P. Pang, Ch. Wang and T. Ren, Biotribological properties of Ti–6Al–4V alloy treated with self–assembly multi–walled carbon nanotube coating, Surf. Coat. Technol., 2020, 382, 125169. doi: 10.1016/j.surfcoat.2019.125169.
10. A. Heijink, J. Schwartz, M.E. Zobitz, K.N. Crowder, G.E. Lutz and J.D. Sibonga, Selfassembled Monolayer Films of Phosphonates for Bonding RGD to Titanium, Clin. Orthop. Relat. Res., 2008, 466, 977–984. doi: 10.1007/s11999-008-0117-7.
11. R.P. Zhao, S. Rupper and S. Gaan, Recent Development in Phosphonic Acid Based Organic Coatings on Aluminum, Coatings, 2017, 7, no. 89, 133. doi: 10.3390/coatings7090133.
12. W. Zhao, M. Göthelid, S. Hosseinpour, M. Johansson, G. Li, C. Leygraf and C.M. Johnson, The nature of self–assembled octadecylphosphonic acid (ODPA) layers on copper substrates, J. Colloid Interface Sci., 2021, 581, 816–825. doi: 10.1016/j.jcis.2020.07.058.
13. R.W. Murray, Chemically modified electrodes, Acc. Chem. Res., 1980, 13, 135–141. doi: 10.1021/ar50149a002.
14. R. Nuzzo, D. Allara, Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc., 1983, 105, 4481–4483 doi: 10.1021/ja00351a063.
15. G.K. Jennings, P.E. Laibinis, Self–assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments, Colloids Surf. A: Physicochemical and Engineering Aspects, 1996, 116, 105–114. doi: 10.20964/2019.05.28.
16. A. Ulman, Part four–Modeling of Monolayers, in: An Introduction to Ultrathin Organic Films, Academic Press, 1991, 305–338. doi: 10.1016/B978-0-08-092631-5.50011-7.
17. A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev., 1996, 96, 1533–1554. doi: 10.1021/cr9502357.
18. J.J. Gooding, F. Mearns, W. Yang and J. Liu, Self–assembled monolayers into the 21<sup>st</sup> Century: recent advances and applications, Electroanalysis, 2003, 15, 81–96. doi: 10.1002/elan.200390017.
19. C. Love, L. Estroff, J. Kriebel, R.G. Nuzzo and G.M. Whitesides, Self–assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev., 2005, 105, 1103–1170. doi: 10.1021/cr0300789.
20. J.Telegdi, T. Rigó and E. Kálmán, Molecular layers of hydroxamic acids in copper corrosion inhibition, J. Electroanal. Chem., 2005, 582, 191–201. doi: 10.1016/j.jelechem.2005.03.045.
21. G.M. Whitesides, J.K. Kriebel and B.T. Mayers, Self–assembly and nanostructured materials, Nanostructure Science and Technology, W.T.S. Huck (Ed.), Springer US, 2005, 217–239. URL: https://www.researchgate.net/publication/303166480_Self_assembly_and_nanostructures_nanostructure_science_and_technology.
22. J. Telegdi, H. Otmačić, K. Tadic, F. Al–Taher, E. Stupnišek–Lisac and E. Kálmán, Inibition of copper corrosion by self-assembled amphiphiles, Chem. and Biochem. Eng. Q., 2007, 21, 77–82.
23. J. Telegdi, T. Rigó, É. Pfeifer, T. Keszthelyi and E. Kálmán, Nanolayer coatings, Prog. Colloid Polym. Sci., 2008, 135, 77–86. doi: 10.1007/2882_2008_098.
24. C. Vericat, M.E. Vela, G. Corthey, E. Pensa, E. Cortés, M.H. Fonticelli, F. Ibanez, G.E. Benitez, P. Carro and R.C. Salvarezza, Self-assembled monolayers of thiolates on metals : a review article on sulfur–metal chemistry and surface structures, RSC Adv., 2014, 4, 27730–27754. doi: 10.1039/C4RA04659E.
25. T. Abohalkuma, F. Shawish and J. Telegdi, Phosphonic acid derivatives in self assembled layers against metal corrosion, Int. J. Corros. Scale Inhib., 2014, 3, 151–159. doi: 10.17675/2305-6894-2014-3-3-151-159.
26. T. Abohalkuma, J. Telegdi, Corrosion protection of carbon steel by special phosphonic acid nano–layers, Mater. Corros., 2015, 66, no. 12, 1382–1390. doi: 10.1002/maco.201508792.
27. J. Telegdi, G. Luciano, S. Mahantry and T. Abohalkuma, Inhibition of aluminum alloy corrosion in electrolytes by self–assembled fluorophosphonic acid molecular layer, Mater. Corros., 2016, 67, no. 10, 1027–1033.
28. J. Telegdi T. Abohalkuma, Influence of the nanolayer post-treatment on the anticorrosion activity, Int. J. Corros. Scale Inhib., 2018, 7, no. 3, 352–365. doi: 10.17675/2305-6894-2018-7-3-6.
29. J. Telegdi, Formation of self-assembled anticorrosion films on different metals, Materials, 2020, 13, no. 5089, 1–25. doi: 10.3390/ma13225089.
30. É. Kocsisné Pfeifer, J. Telegdi and I.G. Gyurika, The effect of heating on the anticorrosive self–assembled phosphonic acid nanolayers, Proceedings of the 6<sup>th</sup> World Congress on Mechanical, Chemical, and Material Engineering (MCM'20) Prague, Czech Republic Virtual Conference, August, 2020, no. MMME 123, 1–6. doi: 10.11159/mmme20.123.
31. D. Geldof, M. Tassi, R. Carleer, P. Adriaensens, A. Roevens, V. Meynen and F. Blockhuys, Binding modes of phosphonic acid derivatives adsorbed on TiO<sub>2</sub> surfaces: Assignments of experimental IR and NMR spectra based on DFT/PBC calculations, Surf. Sci., 2017, 655, 31–38. doi: 10.1016/j.susc.2016.09.001.
32. J.D. Hartgerink, E. Beniash and S. Stupp, Self–assembly and Mineralization of Peptide–Amphiphile Nanofibers, Science, 2001, 294, 1684–1688. doi: 10.1126/science.1063187.
33. T. Nakamoto, M. Katada, K. Endo, H. Sano, Structure of Fe<sub>3</sub>O complexes with long alkyl chain fatty acid, [Fe<sub>3</sub>O(O<sub>2</sub>CC<sub>n</sub>H<sub>2n+1</sub>)6L<sub>3</sub>]NO3 (L=H<sub>2</sub>O, n=11, 13, 15, 17; L=py, n=13, 15, 17); crystal structure of [Fe<sub>3</sub>O(O2CC<sub>13</sub>H<sub>27</sub>)6(py)<sub>3</sub>]NO, Polyhedron, 1998, 17, 3507–3514.
34. S. Valiyaveettil, V. Enkelmann and K. Müllen. Supramolecular structures formed from hydrogen-bonded networks of 5–alkoxyisophthalic acid, J. Chem. Soc., Chem. Commun., 1994, 18, 2097. doi: 10.1039/c39940002097.
35. K.J.M. Bishop, C.E. Wilmer, S. Soh and B.A. Grzybowski, Nanoscale forces and their uses in self–assembly, Small, 2009, 5, 1600–1630. doi: 10.1002/smll.200900358.
36. E. Hoque, J.A. DeRose, B. Bhushan and K.W. Hipps, Low adhesion, non–wetting phosphonate self–assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy, 2009, 109, 1015–1022. doi: 10.1016/j.ultramic.2009.03.033.
37. A. Raman, R. Quiñones, L. Barriger, R. Eastman, A. Parsi and E.S. Gawalt, Understanding organic film behavior on alloy and metal oxides, Langmuir, 2010, 26, 1747–1754. doi: 10.1021/la904120s.
38. T. Abohalkuma, A. Shaban and J. Telegdi, Corrosion Processes Controlled by Phosphonic Acid Nano–layers, Period. Polytech. Chem. Eng., 2018, 60, no. 3, 165–168. doi: 10.3311/PPch.8260.
39. J. Telegdi, T. Szabó, L. Románszki and M. Pávai, Chapter 7(20): The use of nano–microlayers, self–healing and slow–release coatings to prevent corrosion and biofouling, in Mekhlou ASH (szerk.), Handbook of smart coatings for materials protection. Cambridge: Woodhead Publishing Series in Metals and Surface Engineering, 2014, 64, 135–182. doi: 10.1533/9780857096883.2.135.
40. S.C. D’Andrea, A.Y. Fadeev, Covalent surface modification of calcium hydroxyapatite usingn alkyl and fluoroalkylphosphonic acids, Langmuir, 2003, 19, 7904–7910. doi: 10.1021/LA027000S.
41. R. Luschtinetz, A.F. Oliveira, J. Frenzel, J.O. Joswig, G. Seifert and H.A. Duarte, Adsorption of phosphonic and ethylphosphonic acid on aluminum oxide surfaces, Surf. Sci., 2008, 602, 1347–1359. doi: 10.1016/J.SUSC.2008.01.035.
42. R. Quiñones, A. Raman and E.S. Gawalt, Functionalization of nickel oxide using alkyl phosphonic acid self-assembled monolayers, Thin Solid Films, 2008, 516, 8774–8781. doi: 10.1016/J.TSF.2008.06.055.
43. T. Vallant, H. Brunner, U. Mayer and H. Hoffmann, Control of structural order in selfassembled zirconium alkyl phosphonate films, Langmuir, 1998, 14, 5826–5833. doi: 10.1021/LA980462E.
44. T.T. Foster, M.R. Alexander, G.J. Leggett and E. McAlpine, Friction force microscopy of alkyl phosphonic acid and carboxylic acids adsorbed on the native oxide of aluminum, Langmuir, 2006, 22, 9254–9259. doi: 10.1021/LA061082T.
45. E.S. Gawalt, M.J. Avaltroni, N. Koch and J. Schwartz, Self–assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium, Langmuir, 2001, 17, 5736–5738. doi: 10.1021/LA010649X.
46. T. Onda, S. Shibuichi, N. Satoh and K. Tsuji, Supe–Water–Repellent Fractal Surfaces, Langmuir, 1996, 12, 2125–2127. doi: 10.1021/LA950418O.
47. Y.L. Jeyachandran, M.A. Zharnikov, Comprehensive analysis of the effect of electron irradiation on oligo (ethylene glycol) terminated self–assembled monolayers applicable for specific and non–specific patterning of proteins, J. Phys. Chem. C, 2012, 116, 14950–14959. doi: 10.1021/jp303764h.
48. Y. Tai, A. Shaporenko, H. Noda, M. Grunze and M. Zharnikov, Fabrication of a stable metal film on the surface of self–assembled monolayers, Adv. Mater., 2005, 17, 1745–1749. doi: 10.1002/adma.200500464.
49. F. Chesneau, A. Terfort and M. Zharnikov, Nickel deposition on fluorinated, aromatic self–assembled monolayers: chemically induced cross–linking as a tool for the preparation of well–defined top metal films, J. Phys. Chem. C, 2014, 118, 11763–11773. doi: 10.1021/JP5025334.
50. K. Marušić, N. Matijaković Mlinarić and F. Mihaljevic, Influence of gamma irradiation on a fatty acid self–assembling coating of copper, J. Electrochem. Soc., 2018, 165, no. 16, 973–979. doi: 10.1149/2.1301814jes.
51. X. Wan, I. Lieberman, A. Asyuda, S. Resch, H. Seim, P. Kirsch and M. Zharnikov, Thermal stability of phosphonic acid self–assembled monolayers on alumina substrates, J. Phys. Chem. C, 2020, 124, 2531–2542. doi: 10.1021/acs.jpcc.9b10628.
52. E.K. Mioč, Z.H. Gretić and H.O. Ćurković, Modification of cupronickel alloy surface with octadecylphosphonic acid self–assembled films for improved corrosion resistance, Corros. Sci., 2018, 134, 189–198. doi: 10.1016/j.corsci.2018.02.021.
53. B. Arrotin, J. Delhalle, P. Dubois, L. Mespouille and Z. Mekhalif, Electroassisted functionalization of nitinol surface, a powerful strategy for polymer coating through controlled radical surface initiation, Langmuir, 2017, 33, 2977–2985. doi: 10.1021/acs.langmuir.6b04536.
54. P. Marcus (Ed.), Corrosion Mechanisms in Theory and Practice, 3<sup>rd</sup> ed., 2017; CRC Press: Boca Raton, FL, USA; ISBN209781138073630
55. A. Shaban, Gy. Vastag and J. Telegdi, Corrosion Inhibitors, Ch. 2. Metal corrosion and its inhibition mechanisms: an overview. doi: 10.52305/PYBG4044.
56. Y. Tsutsumi, A. Nishikata and T. Tsuru, Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solution, Corros. Sci., 2007, 49, 1394–1407. doi: 10.1016/j.corsci.2006.08.016.
57. Y.I. Kuznetsov, Organic corrosion inhibitors: Where are we now? A review. Part IV. Passivation and the role of mono- and diphosphonates, Int. J. Corros. Scale inhib., 2017, 6, no. 4, 384–427. doi: 10.17675/2305-6894-2017-6-4-3.
58. P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei and A.A. Rahim, Reviews on Corrosion Inhibitors: A Short View, Chem. Eng. Commun., 2016, 203, no. 9, 1145–1156. doi: 10.1080/00986445.2016.1172485.
59. E. Kálmán, I. Felhősi, F.H. Kármán, I. Lukovits, J. Telegdi and G. Pálinkás, Environmetally friendly corrosion inhibitors, Mater. Sci. Technol.; A Comprehensive Treatment, Corrosion and Environmetal Degradation, Wiley–VCH (Edited by R.W. Chan, P. Haasen, E.J. Kramer), 2000, 1, 471–537. doi: 10.1002/9783527619306.ch9.
60. H. Otmačić, J. Telegdi, K. Papp and E. Stupniše–Lisac, Protective properties of an inhibitor layer formed on copper in neutral chloride solution, J. Appl. Electrochem., 2004, 34, no. 5, 545–550. doi: 10.1023/B:JACH.0000021873.30314.eb.
61. J. Telegdi, J. Beczner, N–Substituted amino acids as multifunctional additives used in cooling water. Part I: N–Hydroximethyl amino acids, Int. J. Corros. Scale Inhib., 2014, 3, no. 3, 167–176. doi: 10.17675/2305-6894-2014-3-3-167-176.
62. J. Telegdi, N–Substituted amino acids as multifunctional additives used in cooling water. Part II: N–Carboxymethyl and phosphonomethyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 2, 183–189. doi: 10.17675/2305-6894-2016-5-2-7.
63. J. Telegdi, N–Substituted amino acids as anticorrosion additives. Part III: N–Acyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 3, 263–272. doi: 10.17675/2305-6894-2016-5-3-6.
64. J. Telegdi, N–Substituted unusual amino acids as corrosion inhibitors. Part IV: N–Acyl derivatives of unnatural amino acids with double bond, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 360–366. doi: 10.17675/2305-6894-2016-5-4-6.
65. C. Monticelli, Corrosion Inhibitors; in Surface Science and Electrochemistry, Encycl. Interfacial Chem., 2018, 164–171.
66. B.N. Popov, Corrosion Engineering; Principles and Solved Problems, Corros. Inhib., 2015, 14, 581–597. doi: 10.1016/B978-0-444-62722-3.00014-8.
67. L. Románszki, M. Mohos, J. Telegdi, Zs. Keresztes and L. Nyikos, A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method, Period. Polytech. Chem. Eng., 2014, 58, 53–59. doi: 10.3311/PPch.7188, link.
68. J. Telegdi, Inhibition of microbiologically influenced corrosion by dissolved additives, and by specific nanolayers, DSc Thesis, 2009.
69. E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 2002, 123, 133–145.
70. J. Genzer, K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling; a review, Biofouling, 2006, 22, 339. doi: 10.1080/08927010600980223.
71. N.J. Shirtcliffe, G. McHale, S. Atherton and M.I. Newton, An introduction to superhydrophobicity, Adv. Colloid Interface Sci., 2010, 161, 124. doi: 10.1016/j.cis.2009.11.001.
Рецензия
Для цитирования:
Пфайфер Э.К., Телегди Ю. Улучшенная гидрофобность для лучшего контроля коррозии за счет специальных самоорганизующихся молекулярных покрытий. Коррозия: защита материалов и методы исследований. 2023;(4):63-88. https://doi.org/10.61852/2949-3412-2023-1-4-63-88
For citation:
Pfeifer É.K., Telegdi J. Improved hydrophobicity for better corrosion control by special self–assembled molecular coatings. Title in english. 2023;(4):63-88. (In Russ.) https://doi.org/10.61852/2949-3412-2023-1-4-63-88