Адсорбционное и пассивационное поведение медного сплава комплексами фталоцианинов в водном хлоридном растворе
https://doi.org/10.61852/2949-3412-2023-1-4-89-100
Аннотация
В работе исследованы адсорбционные и защитные свойства терафталанатриевой соли 4,5-октакарбоксифталоцианина на поверхности медного сплава МНЖ5–1 в нейтральном боратном буферном растворе. Терафтал подавляет активное анодное растворение сплава МНЖ5–1 в 0,01 М хлоридном буфере рН 7,40. Защитный эффект увеличивается при Син =1,2 мкмоль/л с 0,18 В до 0,35 В при 25 мкмоль/л. Энергия адсорбции (-Δ𝐺0𝑎,𝑚𝑎𝑥) терафтала на поверхности сплава МНЖ5–1 при Е=0,0 В равна 78,8 кДж/моль. Такое значение указывает на хемосорбцию ингибитора на поверхности электрод, которая происходит за счет атомов кислорода карбоксильных групп. Толщины адсорбированного слоя, определенные методами эллипсометрии ≈0,3 нм, что указывает на плоское расположение терафтала на поверхности.
Об авторах
Н. П. АндрееваРоссия
119071
Ленинский просп., 31, корп. 4
Москва
М. О. Агафонкина
Россия
119071
Ленинский просп., 31, корп. 4
Москва
Список литературы
1. D. Wöhrle, G. Schnurpfeil, S. Makarov, A. Kazarin and O. Suvorova, Practical Applications of Phthalocyanines–from Dyes and Pigments to Materials for Optical, Electronic and Photo-electronic Devices, Macroheterocycles, 2012, 5, 191–202. doi: 10.6060/mhc2012.120990w
2. D. Dini and M. Hanack, Phthalocyanines as materials for advanced technologies: some examples, J. Porphyrins Phthalocyanines, 2004, 8, 915–933. doi: 10.1142/S1088424604000301
3. O. Ostroverkhova, Organic Optoelectronic Materials: Mechanisms and Applications, Chem. Rev. 2016, 116, 13279−13412. doi: 10.1021/acs.chemrev.6b00127
4. R.P. Linstead, Phthalocyanines. Part I. A new type of synthetic colouring matters, J. Chem. Soc., 1934, 1, 1016–1017.
5. K. Venkataraman, The Chemistry of Synthetic Dyes, 1952, 1, ACADEMIC PRESS INC. PUBLISHERS, NEW YORK.
6. K. Esra, G. Nurcan, A. Ahmet, S. Bekir and B. Özer, Synthesis, characterization and VOCs adsorption kinetics of diethylstilbestrol-substituted metallo phthalocyanines, J. of Porphyrins and Phthalocyanines. 2019, 23, 166–174. doi: 10.1142/S1088424619500196
7. E.M. Nasir, M.T. Hussein and A.l. Aarajiy, Impact Thickness Structural and Electrical Characterization of Nickel Phthalocyanine Thin Films, Advances in Materials Physics and Chemistry, 2019; 9, 123–132. doi: 10.4236/ampc.2019.97010
8. Z.J. Guo, B. Wang, X. Wang,Y. Li, S. Gai and Y. Wu, A high-sensitive room temperature gas sensor based on cobalt phthalocyanines and reduced graphene oxide nanohybrids for the ppb-levels of ammonia detection, Royal Society of Chemistry Adv., RSC Advances, 2019, 9, 37518–37525. doi: 10.1039/D0RA08832C
9. E.M. Nasir, M.T. Hussein and A.H. Al-Aarajiy, Investigation of Nickel Phthalocyanine Thin Films for Solar Cell Applications. Advances in Mater. Phys. and Chem. 2019, 9, 158–173. doi: 10.4236/ampc.2019.97010
10. I.V. Aoki, I.C. Guedes and S.L.A. Maranhão, Copper phthalocyanine as corrosion inhibitor for ASTM A606-4 steel in 16% hydrochloric acid, J. of Applied Electrochem, 2002, 32, no., 8, 915–919. doi: 10.1023/A:1020506432003
11. Y. Feng, Sh. Chen, W. Guo, Y. Zhang and G. Liu, Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H<sub>2</sub> SO<sub>4</sub> solutions, J. Electroanal. Chem. 2007, 602, 115–122. doi: 10.1016/j.jelechem.2006.12.016
12. Yu.I. Kuznetsov, N.P. Andreeva, M.O. Agafonkina and A.B. Colov’eva, Modification of Iron Surface by Dimegin and Adsorption of 1,2,3-Benzotriazole, Protect. of Metals and Phys. Chem. of Surf., 2010, 46, 743–747. doi: 10.1134/S2070205110070014
13. K.S. Lokesh, M. De Keersmaecker, A. Elia, D. Depla, P. Dubruel, P. Vandenabeele, S. Van Vlierberghe and A. Adriaens, Adsorption of cobalt (II) 5,10,15,20-tetrakis(2-aminophenyl)-porphyrin onto copper substrates: Characterization and impedance studies for corrosion inhibition, Corros. Sci., 2012, 62, 73–82. doi: 10.1016/j.corsci.2012.04.037
14. Junying Hu, Daobing Huang, Guoan Zhang, Guang-Ling Song and Xingpeng Guo, A Study on Tetraphenylporphyrin as a Corrosion Inhibitor for Pure Magnesium, Electroch. Solid-State Letters, 2012, 15, C13-C15. doi: 10.1149/2.021206esl
15. Junying Hu, Daobing Huang, Guoan Zhang, Guang-Ling Song and Xingpeng Guo, Research on the inhibition mechanism of tetraphenylporphyrin on AZ91D magnesium alloy, Corros. Sci., 2012, 62, 73–82. doi: 10.1016/j.corsci.2012.06.021
16. M.O. Agafonkina, Yu.I. Kuznetsov, N.P. Andreeva and A.B. Solov'eva, Adsorption of dimegin on iron and low-carbon steel from a neutral aqueous solution, Corrosion: materials, protection (Korroziya: materialy, zashchita ), 2013, 8, 19–25 (In Russian).
17. Yu.I. Kuznetsov, M.O. Agafonkina, N.P. Andreeva, L.P. Kazansky, Adsorption of dimegin and inhibition of copper dissolution in aqueous solutions, Corros. Sci., 2015, 100, 535–543. doi: 10.1016/j.corsci.2015.08.028
18. N.P. Andreeva, A.V. Larionov, O.Yu. Grafov, O.A. Golubchikov, L.P. Kazanskii and Yu.I. Kuznetsov, The Adsorption of 5,10,15,20-Tetrakis(N-methylpyridyl-4')porphine Tetratosylate on the Surface of Nickel from an Aqueous Solution, Protect. of Metals and Phys. Chem. of Surf., 2018, 54, 1276–1283. doi: 10.1134/S2070205118070031
19. M.O. Agafonkina, O.Yu. Grafov, N.P. Andreeva, L.P. Kazanskii and Yu.I. Kuznetsov, Modifying Copper and Copper Alloy Surface with Depocolin and 5-Chloro-1,2,3-Benzotriazole from a Neutral Aqueous Solution, Russian J. of Phys. Chem. 2021, 95, 2295–2303. doi: 10.1134/S0036024421110029
20. M.A. Quraishi, J. Rawat and M. Ajmal, Macrocyclic Compounds as Corrosion Inhibitors, Corrosion, 1998, 54, 996–1002. doi: 10.5006/1.3284822
21. S. Hettiarachchi, Y.W. Chan, R.B. Wilson, and V.S. Agarwala, Macrocyclic Corrosion Inhibitors for Steel in Acid Chloride Environments, Corrosion, 1989, 45, 30–34. doi: 10.5006/1.3577884
22. F.R. Longo, J.J. DeLuccia and V.S. Agarwala, Proc. 6<sup>th</sup> European Symp. Corrosion Inhibitors, Univ. of Ferrara, 1985, 155–166.
23. F.M. Mahgoub and A.M. Hefnawy, Inhibition Mechanism of Pitting Corrosion of Nickel in Aqueous Medium by Some Macrocyclic Compounds, Open Journal of Physical Chemistry, 2012, 2, 221–227. doi: 10.4236/ojpc.2012.24030
24. M.A. Quraishi and J.Rawat, A review on macrocyclics as corrosion inhibitors, Corrosion Reviews, 2001, 19, 273–299. doi: 10.1515/corrrev.2001.19.3-4
25. K.R. Ansari, S. Ramkumar, D.S. Chauhan, Md. Salman, D. Nalini, V. Srivastava and M.A. Quraishi, Macrocyclic compounds as green corrosion inhibitors for aluminium: electrochemical, surface and quantum chemical studies, Int. J. Corros. Scale Inhib., 2018, 7, 443–459. doi: 10.17675/2305-6894-2018-7-3-13
26. H.U. Nwankwo, C.N. Ateba, L.O. Olasunkanmi, A.S. Adekunle, D.A. Isabirye, D.C. Onwudiwe and E.E. Ebenso, Synthesis, Characterization, Antimicrobial Studies and Corrosion Inhibition Potential of 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane: Experimental and Quantum Chemical Studies, Materials, 2016, 9, 107. doi: 10.3390/ma9020107
27. M. Dibetsoe, L.O. Olasunkanmi, O.E. Fayemi, S. Yesudass, B. Ramaganthan, I. Bahadur, A.S. Adekunle, M.M. Kabanda and E.E. Ebenso, Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions, Molecules. 2015, 20, 15701–15734. doi: 10.3390/molecules200915701
28. F. Buchner, I. Kellner, M. Schmid, F. Vollnhals, H.P. Steinrück, H. Marbach and J.M. Gottfried, Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond, New J. Phys., 2009, 11. doi: 10.1088/1367-2630/11/12/125004
29. J.M Gottfried and H. Marbach, Surface-Confined Coordination Chemistry with Porphyrins and Phthalocyanines: Aspects of Formation, Electronic Structure, and Reactivity, Z. Phys. Chem., 2009, 223, 53–74. doi: 10.1524/zpch.2009.6024
30. W. Auwärter, A. Schiffrin, A. Weber-Bargioni, Y. Pennec, A. Riemann and J.V. Barth, Molecular nanoscience and engineering on surfaces, Int. J. Nanotechnol. 2008, 5, 1171–1193. doi: 10.1504/IJNT.2008.019836
31. O.Yu. Grafov, L.P. Kazansky, S.V. Dubinskaya and Yu.I. Kuznetsov, Adsorption of depocolin and inhibition of copper dissolution in aqueous solutions, Int. J. Corros. Scale Inhib., 2019, 8, 549–559. doi: 10.17675/2305-6894-2019-8-3-6
32. М.О. Agafonkina, N.P. Andreeva, Yu.I. Kuznetsov and S.F. Timashev, Substituted Benzotriazoles as Inhibitors of Copper Corrosion in Borate Buffer Solutions, Russ. J. of Phys. Chem. A, 2017, 91, 1414–1421. doi: 10.1134/S0036024417080027
33. O.Yu. Grafov, M.O. Agafonkina, N.P. Andreeva, L.P. Kazanskii and Yu.I. Kuznetsov, Adsorption of Depocolin and Dimegin on Nickel from Neutral Aqueous Solutions, Prot. Met. Phys. Chem. Surf., 2019, 55, 1304–1310. doi: 10.1134/S2070205119070074
34. D.A Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B., 1972, 5, 4709–4713 doi: 10.1103/PhysRevB.5.4709
35. H. Scotfield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electr. Spectr. Relat. Phenom., 1976, 8, 129–137. doi: 10.1016/0368-2048(76)80015-1
36. M.O. Agafonkina, Yu.I. Kuznetsov and N.P. Andreeva. Inhibitor properties of carboxylates and their adsorption on copper from aqueous solutions, Russ. J. of Phys. Chemis. A, 2015, 89, 1070–1076. doi: 10.1134/S0036024415060023
Рецензия
Для цитирования:
Андреева Н.П., Агафонкина М.О. Адсорбционное и пассивационное поведение медного сплава комплексами фталоцианинов в водном хлоридном растворе. Коррозия: защита материалов и методы исследований. 2023;(4):89-100. https://doi.org/10.61852/2949-3412-2023-1-4-89-100
For citation:
Andreeva N.P., Agafonkina M.O. Adsorption and passivation behavior of copper alloy by phthalocyanine complexes in an aqueous chloride solution. Title in english. 2023;(4):89-100. (In Russ.) https://doi.org/10.61852/2949-3412-2023-1-4-89-100