Коррозия меди в растворах лимонной кислоты
https://doi.org/10.1234/2949-3412-2023-1-4-151-165
Аннотация
Изучена коррозия меди в свободно аэрируемых растворах лимонной кислоты (C6H8O7) при 20 ± 2 °C. Скорость коррозии меди в таких растворах существенно не зависит от длительности контакта меди с агрессивной средой (1–20 сут.) и концентрации C6H8O7 (0,001–2 M) в ней. Агрессивность растворов C6H8O7 в отношении меди усиливается при переходе от статических сред к средам, перемешиваемым магнитной мешалкой. Агрессивность растворов C6H8O7 в отношении металлической меди также повышает наличие в них продукта коррозии – катионов Cu(II). Этот эффект особенно заметен при контакте её с коррозионной средой, перемешиваемой магнитной мешалкой. Для защиты меди в свободно аэрируемых растворах C6H8O7 рекомендовано производное триазола – ингибитор ИФХАН-92. Эффективность этого ингибитора существенно не зависит от длительности контакта металла с агрессивной средой, содержания в ней C6H8O7, и гидродинамических характеристик раствора. Важным свойством ИФХАН-92 является сохранение им защитного действия в отношении металлической меди даже в случае накопления в коррозионной среде катионов Cu(II), что проявляется не только в статических, но и динамических средах. Зависимость скорости коррозии меди от интенсивности перемешивания коррозивной среды в свободно аэрируемых растворах 2 М C6H8O7 и 2 М C6H8O7+0,05 M Cu(II) в отсутствии и присутствии ингибитора коррозии описывается уравнением k= a+b*n1/2, где a и b – эмпирические параметры, n – частота вращения магнитной мешалки. Добавки ИФХАН-92 снижают параметры а и b этого уравнения.
Об авторах
Я. Г. АвдеевРоссия
119071
Ленинский проспект, 31, корп. 4
Москва
К. Л. Анфилов
Россия
248000
ул. Баженова. 2
Калуга
Ю. И. Кузнецов
Россия
119071
Ленинский проспект, 31, корп. 4
Москва
Список литературы
1. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, Int. J. Corros. Scale Inhib., 2020, 9(4), 1261–1276. doi: 10.17675/2305-6894-2020-9-4-5
2. Я.Г. Авдеев, Высокотемпературная коррозия сталей в растворах кислот. Ч. 1. Методические особенности проведения исследований. Параметры коррозионного процесса. Обзор, Коррозия: материалы, защита, 2020, 4, 1–16. doi: 10.31044/1813-7016-2020-0-4-1-16
3. D.K. Verma, E.E. Ebenso, M.A. Quraishi and C. Verma, Gravimetric, electrochemical surface and density functional theory study of acetohydroxamic and benzohydroxamic acids as corrosion inhibitors for copper in 1M HCl, Results in Phys., 2019, 13, 102194. doi: 10.1016/j.rinp.2019.102194
4. K. El Mouaden, D.S. Chauhan, M.A. Quraishi, L. Bazzi and M. Hilali, Cinnamaldehyde-modified chitosan as a bio-derived corrosion inhibitor for acid pickling of copper: Microwave synthesis, experimental and computational study, Int. J. Biol. Macromol., 2020, 164, 3709–3717. doi: 10.1016/j.ijbiomac.2020.08.137
5. R.K. Ahmed and S. Zhang, Bee pollen extract as an eco-friendly corrosion inhibitor for pure copper in hydrochloric acid, J. Mol. Liq., 2020, 316, 113849. doi: 10.1016/j.molliq.2020.113849
6. M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari and B. Ebrahimi, Evaluating two new synthesized S–N Schiff bases on the corrosion of copper in 15 % hydrochloric acid, Mater. Chem. Phys., 2008, 107, 153–157. doi: 10.1016/j.matchemphys.2007.06.068
7. M.N. El-Haddad, Chitosan as a green inhibitor for copper corrosion in acidic medium, Int. J. Biol. Macromol., 2013, 55, 142–149. doi: 10.1016/j.ijbiomac.2012.12.044
8. L. Larabi, O. Benali, S.M. Mekelleche and Y. Harek, 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid, Appl. Surf. Sci., 2006, 253, 1371–1378. doi: 10.1016/j.apsusc.2006.02.013
9. El-Sayed M. Sherif, R.M. Erasmus and J.D. Comins, Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor, Corros. Sci., 2008, 50, 3439–3445. doi: 10.1016/j.corsci.2008.10.002
10. D.-Q. Zhang, Q.-R. Cai, L.-X. Gao and K.Y. Lee, Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution, Corros. Sci., 2008, 50, 3615–3621. doi: 10.1016/j.corsci.2008.09.007
11. D.-Q. Zhang, H. Wu and L.-X. Gao, Synergistic inhibition effect of l-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution, Mater. Chem. Phys., 2012, 133, 981–986. doi: 10.1016/j.matchemphys.2012.02.001
12. L. Zhou, S. Zhang, B. Tan, L. Feng, B. Xiang, F. Chen, W. Li, B. Xiong and T. Song, Phenothiazine drugs as novel and eco-friendly corrosion inhibitors for copper in sulfuric acid solution, J. Taiwan Inst. Chem. Eng., 2020, 113, 253–263. doi: 10.1016/j.jtice.2020.08.018
13. I. Cakmakcı, B. Duran and G. Bereket, Influence of electrochemically prepared poly(pyrrole-co-N-methylpyrrole) and poly(pyrrole)/poly(N-methylpyrrole) composites on corrosion behavior of copper in acidic medium, Prog. Org. Coat., 2013, 76, 70–77. doi: 10.1016/j.porgcoat.2012.08.015
14. L. Guo, B. Tan, X. Zuo, W. Li, S. Leng and X. Zheng, Eco-friendly food spice 2-Furfurylthio-3-methylpyrazine as an excellent inhibitor for copper corrosion in sulfuric acid medium, J. Mol. Liq., 2020, 317, 113915. doi: 10.1016/j.molliq.2020.113915
15. G. Trabanelli, A. Frignani, C. Monticelli and F. Zucchi, Alkyl-benzotriazole derivatives as inhibitors of iron and copper corrosion, Int. J. Corros. Scale Inhib., 2015, 4(1), 96–107. doi: 10.17675/2305-6894-2015-4-1-096-107
16. D. Shevtsov, O. Kozaderov, Kh. Shikhaliev, E. Komarova, A. Kruzhilin, A. Potapov, C. Prabhakar and I. Zartsyn, 3-Sulphinyl-5-Amino-1H-1,2,4-Triazoles as Inhibitors of Copper Corrosion, Appl. Sci., 2019, 9, 4882. doi: 10.3390/app9224882
17. El-Sayed M. Sherif, R.M. Erasmus and J.D. Comins, Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions, J. Colloid Interface Sci., 2007, 311(1), 144–151. doi: 10.1016/j.jcis.2007.02.064
18. Sudheer and M.A. Quraishi, Electrochemical and theoretical investigation of triazole derivatives on corrosion inhibition behavior of copper in hydrochloric acid medium, Corros. Sci., 2013, 70, 161–169. doi: 10.1016/j.corsci.2013.01.025
19. El-Sayed M. Sherif, R.M. Erasmus and J.D. Comins, Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1,2,4-triazole-5-thiol, J. Colloid Interface Sci., 2007, 306(1), 96–104. doi: 10.1016/j.jcis.2006.10.029
20. Y. Tang, Y. Chen, W. Yang, X. Yin, Y. Liu and J. Wang, 3,5-Bis(2-thienyl)-4-amino-1,2,4-triazole as a corrosion inhibitor for copper in acidic medi, Anti-Corros. Methods Mater., 2010, 57(5), 227–233. doi: 10.1108/00035591011075850
21. A. Zarrouk, H. Zarrok, R. Salghi, B. Hammouti, R. Touir, I. Warad, F. Bentiss, H. Abou El Makarim and N. Benchat, Quantum chemical study of some triazoles as inhibitors of corrosion of copper in acid media, Res. Chem. Intermed., 2013, 39, 1279–1289. doi: 10.1007/s11164-012-0684-9
22. Da-Quan Zhang, Li-Xin Gao and Guo-Ding Zhou, Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group, Corros. Sci., 2004, 46(12), 3031–3040. doi: 10.1016/j.corsci.2004.04.012
23. N.K. Allam, A.A. Nazeer and E.A. Ashour, A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments, J. Appl. Electrochem., 2009, 39, 961–969. doi: 10.1007/s10800-009-9779-4
24. M. Finšgar and I. Milošev, Inhibition of copper corrosion by 1,2,3-benzotriazole : A review, Corros. Sci., 2010, 52(9), 2737–2749. doi: 10.1016/j.corsci.2010.05.002
25. J.M. Bastidas, P. Pinilla, J.L. Polo, and E. Cano, Adsorption of Benzotriazole on Copper Electrode Surfaces in Citric Acid Media, Corrosion, 2002, 58(11), 922–931. doi: 10.5006/1.3280782
26. E. Cano, P. Pinilla, J.L. Polo and J.M. Bastidas, Copper corrosion inhibition by fast green, fuchsin acid and basic compounds in citric acid solution, Mater. Corros., 2003, 54, 222–228. doi: 10.1002/maco.200390050
27. R. He, Z. Liu and N. Gu, Corrosion inhibition effect of PASP and Sulfuric acid high cerium on copper in Citric Acid, Adv. Mater. Res., 2013, 681, 3–6. doi: 10.4028/www.scientific.net/AMR.681.3
28. X.R. Lü, X.C. Lu and J.B. Luo, Influence of pH, immersion time, and benzotriazole concentration on copper corrosion in citric acid based slurries, Chinese Sci. Bull., 2011, 56(11), 1158–1164. doi: 10.1007/s11434-011-4420-4
29. Я.Г. Авдеев, М.В. Тюрина, А.Ю. Лучкин и Ю.И. Кузнецов, Об ингибировании коррозии низкоуглеродистой стали в лимоннокислых растворах, Вестник Тамбовского университета. Серия: Естественные и технические науки, 2013, 18(5), 2262–2265.
30. Я.Г. Авдеев, К.Л. Анфилов и Ю.И. Кузнецов, Коррозия меди в растворах уксусной кислоты, Коррозия: защита материалов и методы исследований, 2023, 1(1), 56–69.
31. S. Tamilmani, W. Huang, S. Raghavan and R. Small, Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper, J. Electrochem. Soc., 2002, 149(12), G638–G642. doi: 10.1149/1.1516224
32. И.А. Молодов и В.В. Лосев Закономерности образования низковалентных промежуточных частиц при стадийном электродном процессе разряда-ионизации металла, В сб. Электрохимия, 7, Под. ред. Ю.М. Полукарова, М.: ВИНИТИ, 1971, 65–113.
33. Я.Г. Авдеев и Н.И. Подобаев, Ингибирование ацетиленовыми спиртами катодной реакции на железе в соляной кислоте в присутствии окислителей. Коррозия: материалы, защита, 2004, 12, 25–27.
34. Ю.В. Плесков и В.Ю. Филиновский, Вращающийся дисковый электрод, М: Наука, 1972, 344 с.
35. Я.Г. Авдеев, А.В. Панова и Т.Э. Андреева, Роль конвективного фактора в коррозии низкоуглеродистой стали в растворе серной кислоты, содержащем сульфат железа (III), Журнал физической химии, 2023, 97(5), 730–446. URL: https://journals.rcsi.science/0044-4537/article/view/136602?ysclid=lr0ewnno8q598559062
36. Я.Г. Авдеев, М.В. Тюрина и Ю.И. Кузнецов, Защита низкоуглеродистой стали в растворах фосфорной кислоты ингибитором ИФХАН-92. Ч. 3. Влияние катионов железа, Коррозия: материалы, защита, 2014, 1, 18–25.
37. Я.Г. Авдеев и Ю.И. Кузнецов, Высокотемпературная коррозия сталей в растворах кислот. Ч. 3. Ингибиторная защита сталей азотсодержащими гетероциклическими органическими соединениями и неорганическими окислителями. Обзор, Коррозия: материалы, защита, 2021, 2, 1–23. doi: 10.31044/1813-7016-2021-0-2-1-23
Рецензия
Для цитирования:
Авдеев Я.Г., Анфилов К.Л., Кузнецов Ю.И. Коррозия меди в растворах лимонной кислоты. Коррозия: защита материалов и методы исследований. 2023;(4):151-165. https://doi.org/10.1234/2949-3412-2023-1-4-151-165
For citation:
Avdeev Ya.G., Anfilov K.L., Kuznetsov Yu.I. Corrosion of copper in citric acid solutions. Title in english. 2023;(4):151-165. (In Russ.) https://doi.org/10.1234/2949-3412-2023-1-4-151-165