Preview

Title in english

Advanced search

Structure and properties of protective films of oleic acid for contact and chamber protection of metals. 1. Magnesium

https://doi.org/10.61852/2949-3412-2024-2-1-23-40

Abstract

Using a complex of corrosion, electrochemical and physical methods, the structure and properties of protective layers of oleic acid (OlA) obtained by contact and chamber processing of magnesium were studied. It has been shown that the treatment of magnesium in a solution of OlK in isopropyl alcohol and in hot vapor of OlK leads to an increase in the corrosion resistance of the metal and inhibition of its anodic dissolution. Chamber processing (CT) is more effective compared to immersion. With both methods of processing magnesium, OlK forms protective films on the surface of approximately the same thickness, which, however, have a different structure. When magnesium is dipped into an OlK solution, rounded agglomerates are formed on it, almost merging with each other. In the case of CO, the surface films have a network structure. The protective effect of OLC is associated with the passivation of magnesium. However, during CO, passive films are characterized by high values of pitting potential and anti-pitting basis in chloride-containing electrolytes. Both options for inhibiting magnesium corrosion are characterized by a mixed blocking and activation mechanism. Moreover, in the case of CR, the activation mechanism dominates. 

About the Authors

I. A. Kuznetsov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



O. A. Goncharova
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



A. A. Chirkunov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



A. Yu. Luchkin
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



V. A. Luchkina
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



N. N. Andreev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



Yu. I. Kuznetsov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



References

1. M. Esmaily, J.E. Svensson, S Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 2017, 89, 92–193. doi: 10.1016/j.pmatsci.2017.04.011

2. A.S. Gnedenkov, V.S. Filonina, S.L. Sinebryukhov and S.V. Gnedenkov, A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor-Containing, Coatings, Molecules, 2023, 28, 2538. doi: 10.3390/molecules28062538

3. Lu Xiaopeng, Yan Li, Pengfei Ju, Yan Chen, Jingshuai Yang, Kun Qian, Tao Zhang and Fuhui Wang, Unveiling the inhibition mechanism of an effective inhibitor for AZ91 Mg alloy, Corros. Sci, 2019, 148, 264–271. doi: 10.1016/j.corsci.2018.12.025

4. Youmin Qiu, Xiaohui Tu, Xiaopeng Lu, Junjie Yang. A novel insight into synergistic corrosion inhibition of fluoride and DL-malate as a green hybrid inhibitor for magnesium alloy, Corros. Sci, 2022, 199, 110177. doi: 10.1016/j.corsci.2022.110177

5. S.V. Lamaka, B. Vaghefinazari, Di Mei, R.P. Petrauskas, D. Höche and M.L. Zheludkevich, Comprehensive screening of Mg corrosion inhibitors, Corros. Sci, 2017, 128, 224–240. doi: 10.1016/j.corsci.2017.07.011

6. K.A. Yasakau, A. Maltseva, S.V. Lamaka, Di Mei, H. Orvi, P. Volovitch, M.G.S. Ferreira and M.L. Zheludkevichю, The effect of carboxylate compounds on Volta potential and corrosion inhibition of Mg containing different levels of iron, Corros. Sci, 2022, 194, 109937. doi: 10.1016/j.corsci.2021.109937

7. D. Jones Joseph Jebaraj et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1258 012035. doi: 10.1088/1757-899X/1258/1/012035

8. Zeqi Liu, Wenlu Yang, Xiaoxiao He, Tiancai Cheng, Hualiang Huang, Jing Xiong and Gangliang Huang, Synthesis of a green inhibitor and its inhibition behavior on AZ91D magnesium alloy in distilled water, Surf. Interfaces, 2022, 30, 101870. doi: 10.1016/j.surfin.2022.101870

9. K.R. Ansari, A. Singh, K.A. Alanazi and M.A. Quraishi, CHAPTER 9–Vapor inhibitors for corrosion protection, Eco-Friendly Corrosion Inhibitors, 2022, 127–136. doi: 10.1016/B978-0-323-91176-4.00012-X

10. Y.I. Kuznetsov, N.N. Andreev and A.I. Marshakov, Physicochemical Aspects of Metal Corrosion Inhibition, Russ. J. Phys. Chem., 2020, 94, 505–515. doi: 10.1134/S0036024420030152

11. F.A. Ansari, C. Verma, Y.S. Siddiqui, E.E. Ebenso and M.A. Quraishi, Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: A review, Int. J. Corros. Scale Inhib., 2018, 7, 126–150. doi: 10.17675/2305-6894-2018-7-2-2

12. O.A. Goncharova, A.Y. Luchkin, I.N. Senchikhin, Y.B. Makarychev, V.A. Luchkina, O.V. Dement’eva, S.S. Vesely and N.N. Andreev, Structuring of Surface Films Formed on Magnesium in Hot Chlorobenzotriazole Vapors, Materials, 2022, 15, 6625. doi: 10.3390/ma15196625

13. O.A. Goncharova, A.Yu. Luchkin, I.A. Archipushkin, N.N. Andreev, Yu.I. Kuznetsov and S.S. Vesely, Vapor-phase protection of steel by inhibitors based on salts of higher carboxylic acids, Int. J. Corros. Scale Inhib., 2019, 8, 568–599. doi: 10.17675/2305-6894-2019-8-3-9

14. A.A. Chirkunov, A.G. Rakoch, E.P. Monakhova, A.A. Gladkova, Z.V. Khabibullina, V.A. Ogorodnikova, M. Serdechnova, Yu.I. Kuznetsov and M.L. Zheludkevich, Corrosion protection of magnesium alloy by PEO-coatings containing sodium oleate, Int. J. Corros. Scale Inhib., 2019, 8, 1170–1188. doi: 10.17675/2305-6894-2019-8-4-22

15. ГОСТ 804-94 Магний первичный в чушках. Технические условия.

16. ELLIPSHEET: Spreadsheet Ellipsometry (Excel Ellipsometer): [Электронный ресурс] EXCEL Worksheets for Basic Ellipsometry Calculation. http://www.ccn.yamanashi.ac.jp/~kondoh/ellips_e.html

17. N. Mahato and M.M. Singh, Investigation of passive film properties and pittinp resistance of ALSI 316 in aqueous ethanoic acid containing chloride ions using electrochemical impedance spectroscopy (EIS), Port. Electrochimica Acta, 2011, 29, 233–251. doi: 10.4152/pea.201104233

18. J.R. Macdonald and E. Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 1–13. doi: 10.1002/0471716243

19. A.Yu. Luchkin, O.A. Goncharova, I.A. Arkhipushkin, N.N. Andreev and Yu.I. Kuznetsov, The effect of oxide and adsorption layers formed in 5-Chlorobenzotriazole vapors on the corrosion resistance of copper, J Taiwan Inst Chem Eng, 2020, 117, 231–241. doi: 10.1016/j.jtice.2020.12.005

20. O.A. Goncharova, A.Yu. Luchkin, N.P. Andreeva, V.E. Kasatkin, S.S. Vesely, N.N. Andreev and Yu.I. Kuznetsov Yurii I. Mutual effect of components of protective films applied on copper and brass from octadecylamine and 1,2,3-benzotriazole vapors. Materials, 2022, 15, 1541. doi: 10.3390/ma15041541


Review

For citations:


Kuznetsov I.A., Goncharova O.A., Chirkunov A.A., Luchkin A.Yu., Luchkina V.A., Andreev N.N., Kuznetsov Yu.I. Structure and properties of protective films of oleic acid for contact and chamber protection of metals. 1. Magnesium. Title in english. 2024;(1):23-40. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-1-23-40

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.