Protection of low-carbon steel in hydrochloric acid solution with mixtures of inhibitors containing surfactants
https://doi.org/10.61852/2949-3412-2024-2-1-60-74
Abstract
The corrosion of low-carbon steel in 2 M HCl was studied in the temperature range t = 25-95°C. For this environment, the possibility of creating mixed corrosion inhibitors (CIs) containing surfactants – catamin AB and cocamidopropylbetaine (CAPB) – has been considered. It has been shown that the compositions catamin AB + urotropine and CAPB + urotropine are promising for the creation of effective CIs steel in 2 M HCl. The optimal total content of mixtures of CIs in an aggressive environment is 5 mM. The molar ratio of surfactant and urotropine in mixtures of CIs is 1:9. The composition of 0,5 mM CAPB + 4,5 mM urotropine effectively slows down the corrosion of 08PS steel in 2 M HCl at t≤60°C, ensuring a steel corrosion rate of no higher than 3.9 g/(m2×h). At t = 60°C, steel corrosion slows down by 27 times. The composition of 0,5 mM catamin AB + 4,5 mM urotropine inhibits steel corrosion more strongly. A significant decrease in the corrosion rate of steel in its presence is observed at t≤80°C, when it does not exceed 6.9 g/(m2×h). The corrosion process at t = 80°C is slowed down 90 times. It is noted that replacing single-component CIs with two-component mixtures makes it possible to increase the efficiency of steel protection and reduce the consumption of the most expensive components used for their production.
About the Authors
Ya. G. AvdeevRussian Federation
Leninskii pr. 31, 119071, Moscow
T. E. Andreeva
Russian Federation
Leninskii pr. 31, 119071, Moscow
References
1. Я.Г. Авдеев, Ю.И. Кузнецов, Органические ингибиторы коррозии металлов в растворах кислот. I. Особенности механизма защитного действия, Журнал физической химии, 2023, 97, no. 3, 305–321. doi: 10.31857/S0044453723030056
2. Я.Г. Авдеев, Ю.И. Кузнецов, Органические ингибиторы коррозии металлов в растворах кислот. II. Пути повышения защитного действия. Основные группы соединений, Журнал физической химии, 2023, 97, no. 4, 459–468. doi: 10.31857/S0044453723040052
3. Я.Г. Авдеев, Е.Н. Юрасова и Т.А. Ваграмян, Защита низкоуглеродистой стали в растворах минеральных кислот кислотными красителями, Коррозия: материалы, защита, 2018, 10, 29–37. doi: 10.31044/1813-7016-2018-0-10-29-37
4. А.А. Абрамзон, В.В. Бочаров, Г.М. Гаевой, А.Д. Майофис, С.Л. Майофис, Р.М. Маташкина, Л.Я. Сквирский, Б.Е. Чистяков и Л.А. Шиц, Поверхностно-активные вещества. Справочник, Под ред. А.А. Абрамзона и Г.М. Гаевого, Л.: Химия, 1979, 376 с.
5. M.Y. Pletnev, 1. Chemistry of surfactants, In Studies in Interface Science, Eds. V.B. Fainerman, D. Möbius and R. Miller, Elsevier, 2001, 13, 1–97. doi: 10.1016/S1383-7303(01)80062-4
6. R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review, Advances in Colloid and Interface Science, 2002, 97, no. 1–3, 205– 253. doi: 10.1016/S0001-8686(01)00069-0
7. B. Brycki and A. Szulc, Gemini surfactants as corrosion inhibitors. A review, Journal of Molecular Liquids, 2021, 344, 117686. doi: 10.1016/j.molliq.2021.117686
8. M.R. Porter, Surfactants commercially available, In Handbook of Surfactants, Springer, Boston, 1991, 49–53. doi: 10.1007/978-1-4757-1293-3_5
9. Chemistry and Technology of Surfactants, Ed. R.J. Farn, Blackwell Publishing Ltd, 2006, 315 p. doi: 10.1002/9780470988596
10. B.E. Rapp, Chapter 20 - Surface Tension, In Micro and Nano Technologies,Microfluidics: Modelling, Mechanics and Mathematics, Ed. B.E. Rapp, Elsevier, 2017, 421–444. doi: 10.1016/B978-1-4557-3141-1.50020-4
11. M.R. Porter, Anionics, In Handbook of Surfactants, Springer, Boston, 1991, 54 –115. doi: 10.1007/978-1-4757-1293-3_6
12. M.R. Porter, Non-ionics, In Handbook of Surfactants, Springer, Boston, 1991, 116–178. doi: 10.1007/978-1-4757-1293-3_7
13. M.R. Porter, Surfactants commercially available. In Handbook of Surfactants, Springer, Boston, 1991, 179–188. doi: 10.1007/978-1-4757-1293-3_8
14. M.R. Porter, Amphoterics, In Handbook of Surfactants, Springer, Boston, 1991, 189–202. doi: 10.1007/978-1-4757-1293-3_9
15. M.R. Porter, Speciality surfactants. In Handbook of Surfactants, Springer, Boston, 1991, 203–208. doi: 10.1007/978-1-4757-1293-3_10
16. M.R. Porter, Polymeric surfactants. In Handbook of Surfactants, Springer, Boston, 1991, 209–211. doi: 10.1007/978-1-4757-1293-3_11
17. M.A. Malik, M.A. Hashim, F. Nabi, S.A. AL-Thabaiti and Z. Khan, Anti-corrosion Ability of Surfactants: A Review, International Journal of Electrochemical Science, 2011, 6, no. 6, 1927–1948. doi: 10.1016/S1452-3981(23)18157-0
18. A. de Oliveira Wanderley Neto, T.N. de Castro Dantas, A.A. Dantas Neto and A. Gurgel, Chapter 19 - Recent Advances on the Use of Surfactant Systems as Inhibitors of Corrosion on Metallic Surfaces, In The Role of Colloidal Systems in Environmental Protection, Ed. M. Fanun, Elsevier, 2014, 479–508. doi: 10.1016/B978-0-444-63283-8.00019-3
19. R. Aslam, M. Mobin, J. Aslam, A. Aslam, S. Zehra and S. Masroor, Application of surfactants as anticorrosive materials: A comprehensive review, Advances in Colloid and Interface Science, 2021, 295, 102481. doi: 10.1016/j.cis.2021.102481
20. Y. Zhu, M.L. Free, R. Woollam and W. Durnie, A review of surfactants as corrosion inhibitors and associated modeling, Progress in Materials Science, 2017, 90, 159–223. doi: 10.1016/j.pmatsci.2017.07.006
21. Я.Г. Авдеев, П.А. Белинский, Ю.И. Кузнецов, О.О. Зель, Новый ингибитор коррозии стали в серной кислоте, Защита металлов, 2007, 43, no. 6, 648–651.
22. Ya.G. Avdeev, K.L. Anfilov and Yu.I. Kuznetsov, Effect of nitrogen-containing inhibitors on the corrosion inhibition of low-carbon steel in solutions of mineral acids with various anionic compositions, Int. J. Corros. Scale Inhib., 2021, 10, no. 4, 1566–1586. doi: 10.17675/2305-6894-2021-10-4-12
23. Я.Г. Авдеев, А.В. Панова и Т.Э. Андреева, Роль конвективного фактора в коррозии низкоуглеродистой стали в растворе серной кислоты, содержащем сульфат железа(III), Журнал физической химии, 2023, 97, no. 5, 730–446. doi: 10.31857/S0044453723050059
24. Ya.G. Avdeev, T.A. Nenasheva, A.Yu. Luchkin, A.I. Marshakov and Yu.I. Kuznetsov, Effect of Quaternary Ammonium Salts and 1,2,4-Triazole Derivatives on Hydrogen Absorption by Mild Steel in Hydrochloric Acid Solution, Materials, 2022, 15, no. 19, 6989. doi: 10.3390/ma15196989
25. T. Vasudevan, S. Muralidharan, S. Alwarappan and S.V.K. Iyer, The influence of N-hexadecyl benzyl dimethyl ammonium chloride on the corrosion of mild steel in acids, Corros. Sci., 1995, 37, no. 8, 1235–1244. doi: 10.1016/0010-938X(95)00028-I
26. L. Wang, H. Wang, A. Seyeux, S. Zanna, A. Pailleret, S. Nesic and P. Marcus, Adsorption mechanism of quaternary ammonium corrosion inhibitor on carbon steel surface using ToF-SIMS and XPS, Corros. Sci., 2023, 213, 110952. doi: 10.1016/j.corsci.2022.110952
27. P. Alaei, B.P. Binks, P.D. I. Fletcher and I.E. Salama, Surfactant Properties of Alkylbenzyldimethylammonium Chloride Oilfield Corrosion Inhibitors, In Corrosion 2013, Orlando, Florida, March 2013, Paper Number: NACE-2013-2158.
28. Y. Zhu and M.L. Free, Investigation of the Corrosion Inhibition Efficiency on X65 Steel of Surfactant Mixtures of Alkyl Benzyl Dimethyl Ammonium Chlorides, Meet. Abstr., 2014, MA2014-01, 472. doi: 10.1149/MA2014-01/7/472
29. A. Gholami, M. Golestaneh and Z. Andalib, A new method for determination of cocamidopropyl betaine synthesized from coconut oil through spectral shift of Eriochrome Black T, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 122–127. doi: 10.1016/j.saa.2017.11.007
30. H. Wu, J. Huang and J. Luo, Synthesis and characterization of cocamidopropyl betaine, 9, 2014, 44, no. 1, 23–26. doi: 10.13218/j.cnki.csdc.2014.01.006
31. S.K. Clendennen and N.W. Boaz, Chapter 14 - Betaine Amphoteric Surfactants –Synthesis, Properties, and Applications, In Biobased Surfactants (Second Edition), Eds. D.G. Hayes, D.K.Y. Solaiman, R.D. Ashby, AOCS Press, 2019, 447–469. doi: 10.1016/B978-0-12-812705-6.00014-9
32. P. Thau, Surfactants for Skin Cleansers, In Surfactants in cosmetics (Second Edition), Eds. M.M. Rieger and L.D. Rhein, Marcel Dekker, New York, 1997, 285–306.
33. L. Rhein, C.3 - Surfactant Action on Skin and Hair: Cleansing and Skin Reactivity Mechanisms, In Handbook for Cleaning/Decontamination of Surfaces, Eds. I. Johansson, P. Somasundaran, Elsevier Science B.V., 2007, 305–369. doi: 10.1016/B978-044451664-0/50009-7
34. S. Vonlanthen, M.T. Brown and A. Turner, Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca, Ecotoxicology, 2011, 20, 202–207. doi: 10.1007/s10646-010-0571-3
35. C.L. Burnett, W.F. Bergfeld, D.V. Belsito, R.A. Hill, C.D. Klaassen, D. Liebler, M.J.G. Jr, R.C. Shank, T.J. Slaga, P.W. Snyder and F.A. Andersen, Final report of the Cosmetic Ingredient Review Expert Panel on the safety assessment of cocamidopropyl betaine (CAPB), Int. J. Toxicol., 2012, 31, no. 4 (Suppl.), 77S–111S. doi: 10.1177/1091581812447202
36. S.T. Keera snd M.A. Deyab, Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266, no. 1−3, 129–140. doi: 10.1016/j.colsurfa.2005.05.069
37. H. Luo, Y.C. Guan and K.N. Han, Inhibition of Mild Steel Corrosion by Sodium Dodecyl Benzene Sulfonate and Sodium Oleate in Acidic Solutions, Corrosion, 1998, 54, no. 8, 619–627. doi: 10.5006/1.3287638
38. Ф.Б. Гликина, Е.С. Булавина и Н.И. Подобаев, Защита от коррозии стали марок Ст. 1 и ЭИ 531 в разбавленных растворах соляной кислоты в присутствии хлорида железа, Ингибиторы коррозии металлов, Под ред. С.А. Балезина, Ф.Б. Гликиной, Н.И. Подобаева, Н.Г. Ключникова и Э.Г. Зак, Москва, МГПИ им. В.И. Ленина, 1969, 190–195.
39. А.И. Алцыбеева, С.З. Левин, Ингибиторы коррозии металлов (Справочник), Ленинград, Химия, 1968, 264 с.
40. С.М. Решетников, Ингибиторы кислотной коррозии металлов, Ленинград, Химия, 1986, 144 с.
41. Е.С. Иванов, Ингибиторы коррозии металлов в кислых средах. Справочник, Москва, Металлургия, 1986, 175 с.
42. E. Bayol, K. Kayakırılmaz and M. Erbil, The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel, Mater. Chem. Phys., 2007, 104, no. 1, 74–82. doi: 10.1016/j.matchemphys.2007.02.073
43. S. Aribo, S.J. Olusegun, G.L.S. Rodrigues, A.S. Ogunbadejo, B. Igbaroola, A.T. Alo, W.R. Rocha, N.D.S. Mohallem and P.A. Olubambi, Experimental and theoretical investigation on corrosion inhibition of hexamethylenetetramine [HMT] for mild steel in acidic solution, Journal of the Taiwan Institute of Chemical Engineers, 2020, 112, 222–231. doi: 10.1016/j.jtice.2020.06.011
44. D. Liu, X. Qiu, M. Shao, J. Gao, J. Xu, Q. Liu, H. Zhou and Z. Wang, Synthesis and evaluation of hexamethylenetetramine quaternary ammonium salt as corrosion inhibitor, Materials and Corrosion, 2019, 70, no. 10, 1907–1916. doi: 10.1002/maco.201810700
45. M. Shao, D. Liu, T. Zhu and B. Liao, Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor, Journal of Chinese Society for Corrosion and Protection, 2020, 40, no. 3, 244–250. doi: 10.11902/1005.4537.2019.037
46. Я.Г. Авдеев, Д.С. Кузнецов и С.В. Олейник, Ингибиторная защита сталей в растворах соляной кислоты в условиях высокотемпературной коррозии (до 160°C), Коррозия: материалы, защита, 2017, 1, 39–47.
47. Я.Г. Авдеев, О.А. Киреева, Д.С. Кузнецов и Ю.И. Кузнецов, Усиление уротропином ингибирования коррозии стали 08ПС композицией ИФХАН-92 с KNCS в смесях НСl и H3PO4, содержащих Fe(III), Коррозия: материалы, защита, 2018, 7, 22–28. doi: 10.31044/1813-7016-2018-0-7-22-28
Review
For citations:
Avdeev Ya.G., Andreeva T.E. Protection of low-carbon steel in hydrochloric acid solution with mixtures of inhibitors containing surfactants. Title in english. 2024;(1):60-74. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-1-60-74