Effect of the octadecylamine:benzotriazole ratio on the protective properties of their mixture in the chamber treatment of steel
https://doi.org/10.61852/2949-3412-2024-2-1-106-118
Abstract
The effect of the octadecylamine:benzotriazole ratio on the protective effect of their mixture as a chamber inhibitor of steel corrosion has been studied by corrosion and electrochemical methods. It has been found that the anticorrosive aftereffect of the mixture depends on the ratio of the components. The inhibitor containing 75% of octadecylamine has the best protective properties. The mixture of octadecylamine and benzotriazole in the chamber treatment of steel is characterized by an antagonism of the protective action, but the inhibitor with the optimum composition is noticeably superior in efficiency to each component alone. The antagonism of the protective effect of octadecylamine and benzotriazole may be due to the acid-base interactions of these compounds accompanied by a decrease in the inhibitor vapor pressure. The protective action of the octadecylamine:benzotriazole mixture is caused by a stabilization of the passive state of steel that manifests itself as an increase in the pitting potential and/or anti-pitting base in chloride-containing electrolytes. The mixture studied acts by the "blocking-activation" mechanism with predominance of blocking effects.
About the Authors
A. V. KaraulovaRussian Federation
Leninsky pr. 31, 119071 Moscow
Miusskaya sq. 9, 125047 Moscow
A. Yu. Luchkin
Russian Federation
Leninsky pr. 31, 119071 Moscow
O. A. Goncharova
Russian Federation
Leninsky pr. 31, 119071 Moscow
N. N. Andreev
Russian Federation
Leninsky pr. 31, 119071 Moscow
References
1. А.А. Михайлов, Ю.А. Панченко и Ю.И. Кузнецов, Атмосферная коррозия и защита металлов, Тамбов, Изд-во Р.В. Першина, 2016, 555 с.
2. И.Л. Розенфельд, Атмосферная коррозия металлов, М.: Изд-во АН СССР, 1960, 372 с.
3. Ю.Н. Михайловский, Атмосферная коррозия металлов и методы их защиты, М.: Металлургия, 1989, 102 с.
4. Ву Динь Вуй, Атмосферная коррозия металлов в тропиках, М.: Наука, 1994, 240 с.
5. S.K. Chawla and J.H. Payer, Atmospheric corrosion: A comparison of indoor vs. outdoor, Proceedings 11th Int. Corros. Congr, 1990, 2–17.
6. C. Leygraf, I.O. Wallinder, J. Tidblad and T. Graedel, Atmospheric Corrosion, 2nd ed, New Haven, CT, USA, 2016, 152.
7. C. Leygraf and T.E. Graedel, Atmospheric corrosion, John Wiley & Sons, 2000, 187.
8. K. Barton, Protection against atmospheric corrosion. Theories and Methods, John Willey & Sons, 1976, 194.
9. И.Л. Розенфельд и В.П. Персианцева, Ингибиторы атмосферной коррозии, М.: Наука, 1985, 277 с.
10. P.D. Donovan, Protection of Metals from Corrosion in Storage and Transit, Chichester, Ellis Horwood Limited, 1986, 228 p.
11. Л.И. Антропов, Е.М. Макушин и В.Ф. Панасенко, Ингибиторы коррозии металлов, Киев: Издательство «Технiка», 1981, 183 с.
12. J.I. Bregman, Corrosion inhibitors, Pergamon Press, New York, 1963.
13. Yu.I. Kuznetsov, Organic Inhibitors of Corrosion of Metals, 1996, New York, Plenum Press, 283 pp.
14. О.И. Гуляницкий, Летучие ингибиторы коррозии черных металлов, 1958, Челябинск: Челябинское книжное издательство, 75 с.
15. C. Fiaud, Theory and practice of vapour phase inhibitors, in: Working Party Report on Corrosion Inhibitors, The Institute of Materials, London, 1994, 1–11.
16. A. Subramanian, M. Natesan, V.S. Muralidharan, K. Balakrishnan and N. Vasudevan, An Overview: Vapor Phase Corrosion Inhibitors, Corrosion, 2000, 56(2), 144–155.
17. Yu.I. Kuznetsov, Fundamental and Practice of Volatile Corrosion Inhibitors of Atmospheric Corrosion of Metals, Proceedings of 6th All Polish Corrosion Conference KORROZJA’99, 1999, 425.
18. N.N. Andreev and Yu.I. Kuznetsov, Progress in the Fundamental of Volatile Inhibitors of Atmospheric Corrosion of Metals, in: Reviews on Corrosion Inhibitor Science and Technology, 2004, 3, NACE International, Houston, P.II-1-18, Int. J. Corros. Scale Inhib., 2023, 12(4), 2171–2197 2195
19. D.M. Bastidas, E. Cano and E.M. Mora, Volatile Corrosion Inhibitors: a review, AntiCorros. Methods Mater., 2005, 52(2), 71–77. doi: 10.1108/00035590510584771
20. A.I. Altsybeeva, V.V. Burlov, N.S. Fedorova, T.M. Kuzinova and G.F. Palatik, Volatile inhibitors of atmospheric corrosion of ferrous and nonferrous metals. I. Physical and chemical aspects of selection of starting reagents and synthetic routes, Int. J. Corros. Scale Inhib., 2012, 1(1), 51–64. doi: 10.17675/2305-6894-2012-1-1-051-064
21. A.I. Altsybeeva, V.V. Burlov, N.S. Fedorova, T.M. Kuzinova and G.F. Palatik, Volatile inhibitors of atmospheric corrosion of ferrous and nonferrous metals. II. Prediction of the efficiency of volatile inhibitors of atmospheric corrosion of steel (with Schiff and Mannich bases as examples), Int. J. Corros. Scale Inhib., 2012, 1(2), 99–106. doi: 10.17675/2305-6894-2012-1-2-099-106
22. F.A. Ansari, C. Verma, Y.S. Siddiqui, E.E. Ebenso and M.A. Quraishi, Volatile corrosion inhibitors for ferrous and non-ferrous metals and alloys: A review, Int. J. Corros. Scale Inhib., 2018, 7(2), 126–150 doi: 10.17675/2305-6894-2018-7-2-2
23. S. Gangopadhyay and P.A. Vahanwar, Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review, J. Coat. Technol. Res., 2018, 15(4), 789–807. doi: 10.1007/s11998-017-0015-6
24. Yu.I. Kuznetsov, The Role of Irreversible Adsorption in the Protection Action of Volatile Corrosion Inhibitors, CORROSION 98, USA, NACE, Houston, San Diego, 1998, Paper No 242.
25. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Beltran, Technological Applications of Volatile Corrosion Inhibitors, Corros. Rev., 2018, 36(3), 227–238. doi:10.1515/corrrev-2017-0102
26. Пат. 2649354 РФ, Н.Н. Андреев, О.А. Гончарова, Ю.И. Кузнецов и А.Ю Лучкин. Способ защиты металлов от атмосферной коррозии, 02.04.2018.
27. O.A. Goncharova, A.Yu. Luchkin, Yu.I. Kuznetsov, N.N. Andreev, N.P. Andreeva and S.S. Vesely, Octadecylamine, 1,2,3-benzotriazole and a mixture thereof as chamber inhibitors of steel corrosion. Int. J. Corros. Scale Inhib., 2018, 2, 203–212. doi: 10.17675/2305-6894-2018-7-2-7
28. O.A. Goncharova, A.Yu. Luchkin, N.P. Andreeva, V.E. Kasatkin, S.S. Vesely, N.N. Andreev and Yu.I. Kuznetsov, Mutual Effects of Components of Protective Films Applied on Steel in Octadecylamine and 1,2,3-Benzotriazole Vapors, Material,. 2021, 14(23), 7181. doi:10.3390/ma14237181
29. O.A. Goncharova, Yu.I. Kuznetsov, N.N. Andreev, A.Yu. Luchkin, N.P. Andreeva and D.S. Kuznetsov, A new corrosion inhibitor for zinc chamber treatment. Int. J. Corros. Scale Inhib., 2018, 3, 340–351. doi: 10.17675/2305-6894-2018-7-3-5
30. O.A. Goncharova, A.Yu. Luchkin, N.N. Andreev, N.P. Andreeva and S.S. Vesely, Triazole derivatives as chamber inhibitors of copper corrosion, Int. J. Corros. Scale Inhib., 2018, 4, 657–672. doi: 10.17675/2305-6894-2018-7-4-12
31. F. Mansfeld, M.W. Kending and S. Tsai, Recording and Analysis of AC Impedance Data for Corrosion Studies. Corrosion, 1982, 37, 301–307. doi: 10.5006/1.3621688
32. F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings, J. Appl. Electrochem., 1995, 25, 187– 202. doi:10.1007/BF00262955
33. E. Barsoukov and J.R. Macdonald (ed.), Impedance spectroscopy: theory, experiment, and applications, John Wiley & Sons, 2018.
34. A.I. Shcherbakov, I.G. Korosteleva, I.V. Kasatkina, V.E. Kasatkin, L.P. Kornienko, V.N. Dorofeeva, V.V. Vysotskii and V.A. Kotenev, Impedance of an Aluminum Electrode with a Nanoporous Oxide, Prot. Met. Phys. Chem. Surf., 2019, 55, 689– 694. doi: 10.1134/S2070205119040208
Review
For citations:
Karaulova A.V., Luchkin A.Yu., Goncharova O.A., Andreev N.N. Effect of the octadecylamine:benzotriazole ratio on the protective properties of their mixture in the chamber treatment of steel. Title in english. 2024;(1):106-118. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-1-106-118