Антикоррозионная активность амфифила фосфоновой кислоты в самоорганизующемся молекулярном слое
https://doi.org/10.61852/2949-3412-2024-2-2-13-28
Аннотация
Целью настоящей статьи было продемонстрировать повышение коррозионной стойкости двух нержавеющих сталей после нанесения нанослоев. Вопросы, на которые мы хотели ответить, заключались в следующем: как время самоорганизующегося осаждения влияет на компактность нанослоев и на то, как состав стали влияет на осаждение нанопленки, ее компактность и антикоррозийные свойства. Чтобы ответить на эти вопросы, были приготовлены методом погружения самоорганизующиеся молекулярные слои; нанослои характеризовались величиной смачиваемости водой и образцы двух различных нержавеющих сталей с нанопленками и без них подвергались воздействию агрессивных сред (раствор натрий хлорида). Влияние хлорид–ионов на твердые поверхности визуализировали методом атомной силовой микроскопии и характеризуется параметрами шероховатости. Антикоррозийная эффективность вызвано составом поверхности стали, а также различной самоорганизующейся адсорбцией. Время было объяснено экспериментальными данными.
Об авторах
Э. К. ПфайферВенгрия
кафедра Функциональных и конструкционных материалов
ул. Эгиетем 10, 8200 Веспрем
И. Г. Гюрика
Венгрия
кафедра Функциональных и конструкционных материалов
ул. Эгиетем 10, 8200 Веспрем
Ю. Телегди
Венгрия
1117 Будапешт
Список литературы
1. H. Assad and A. Kumar, Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds, J. Mol. Liq., 2021, 344, no. 117755. doi: 10.1016/j.molliq.2021.117755
2. D.S. Chauhan, C. Verma and M.A. Quraishi, Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights, J. Mol. Struct., 2021, 1227, no. 129374. doi: 10.1016/j.molstruc.2020.129374
3. E. Kálmán, I. Felhősi, F.H. Kármán, I. Lukovits, J. Telegdi and G. Pálinkás, Environmentally Friendly Corrosion Inhibitors, Materials Science and Technology: A Comprehensive Treatment, Weinheim, Germany, Wiley–VCH Verlag GmbH, 2000, 471–537. doi: 10.1002/9783527619306.ch9
4. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part IV. Passivation and the role of mono- and diphosphonates, Int. J. Corros. Scale Inhib., 2017, 6, no. 4, 384–427. doi: 10.17675/2305-6894-2017-6-4-3
5. C.G. Dariva and A.F. Galio, Corrosion Inhibitors – Principles, Mechanisms and Applications, Dev. Corros. Prot., 2014, 365–379. doi: 10.5772/57255
6. J. Telegdi, Chapter 3 – History of phosphorus-containing corrosion inhibitors: From the beginning till the present time, Water–Formed Deposits, Elsevier, 2022, 49–68. doi: 10.1016/B978-0-12-822896-8.00004-2
7. C. Verma, D.K. Verma, E.E. Ebenso and M.A. Quraishi, Sulfur and phosphorus heteroatom–containing compounds as corrosion inhibitors: An overview, Heteroat. Chem., 2018, 29, no. 4, e21437. doi: 10.1002/hc.21437
8. A. Moschona, N. Plesu, R.M.P. Colodrero, A. Cabeza, A.G. Thomas and K.D. Demadis, Homologous alkyl side–chain diphosphonate inhibitors for the corrosion protection of carbon steels, Chem. Eng. J., 2021, 405, 126864. doi: 10.1016/j.cej.2020.126864
9. J. Telegdi, N-Substituted unusual amino acids as corrosion inhibitors. Part IV: N-Acyl derivatives of unnatural amino acids with double bond, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 360–366. doi: 10.17675/2305-6894-2016-5-4-6
10. J. Telegdi, N-Substituted amino acids as multifunctional additives used in cooling water. Part II: N-carboxymethyl and phosphonomethyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 2, 183–189. doi: 10.17675/2305-6894-2016-5-2-7
11. Yu.I. Kuznetsov and G.V. Redkina, Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media, Coatings, 2022, 12, no. 2, 149. doi: 10.3390/coatings12020149
12. L.T. Nhiem, D.T.Y. Oanh and N.H. Hieu, Nanocoating toward anti-corrosion: A review, Vietnam J. Chem., 2023, 61, no. 3, 284–293. doi: 10.1002/vjch.202300025
13. A. Jaiswal, R.A. Singh and R.S. Dubey, Inhibition of Copper Corrosion in Aqueous Sodium Chloride Solution by N-Octadecylbenzidine/1-Docosanol Mixed Langmuir–Blodgett Films, Corrosion, 2001, 57, no. 4, 307–312. doi: 10.5006/1.3290354
14. M. Knag, K. Bilkova, E. Gulbrandsen, P. Carlsen and J. Sjöblom, Langmuir–Blodgett films of dococyltriethylammonium bromide and octadecanol on iron. Deposition and corrosion inhibitor performance in CO 2 containing brine, Corros. Sci., 2006, 48, no. 9, 2592–2613. doi: 10.1016/j.corsci.2005.07.013
15. J. Telegdi, T. Rigó, É. Pfeifer, T. Keszthelyi and E. Kálmán, Nanolayer Coatings, Colloids for Nano– and Biotechnology, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 77–86. doi: 10.1007/2882_2008_098
16. J. Telegdi, T. Szabó, L. Románszki and M. Pávai, Chapter 7(20): The use of nano/microlayers, self–healing and slow–release coatings to prevent corrosion and biofouling, Handbook of Smart Coatings for Materials Protection, 2014, 135–182. doi: 10.1533/9780857096883.2.135
17. G.B. Hadjichristov, Y. Marinov, T. Vlakhov and N. Scaramuzza, Chapter Five – Phospholipid Langmuir–Blodgett nano–thin monolayers: Electrical response to cadmium ions and harmful volatile organic compounds, Adv. Biomembr. Lipid Self-Assem., 2021, 34, 129–172. doi: 10.1016/bs.abl.2021.11.005
18. J. Telegdi, Formation of Self–Assembled Anticorrosion Films on Different Metals, Materials, 2020, 13, no. 22, 5089. doi: 10.3390/ma13225089
19. T. Abohalkuma, F. Shawish and J. Telegdi, Phosphonic acid derivatives used in self–assembled layers against metal corrosion, Int. J. Corros. Scale Inhib., 2014, 3, no. 3, 151–159. doi: 10.17675/2305-6894-2014-3-3-151-159
20. Z.H. Gretić, E.K. Mioč, V. Čadež, S. Šegota, H. Otmačić Ćurković and S. Hosseinpour, The Influence of Thickness of Stearic Acid Self–Assembled Film on Its Protective Properties, J. Electrochem. Soc., 2016, 163, no. 14, 937–944. doi: 10.1149/2.1461614jes
21. J. Telegdi, G. Luciano, S. Mahanty and T. Abohalkuma, Inhibition of aluminum alloy corrosion in electrolytes by self–assembled fluorophosphonic acid molecular layer, Mater. Corros., 2016, 67, no. 10, 1027–1033. doi: 10.1002/maco.201508792
22. M. Petrunin, A. Rybkina, T. Yurasova and L. Maksaeva, Effect of Organosilicon Self–Assembled Polymeric Nanolayers Formed during Surface Modification by Compositions Based on Organosilanes on the Atmospheric Corrosion of Metals, Polymers, 2022, 14, no. 20, 4428. doi: 10.3390/polym14204428
23. D.V. Andreeva, E.V. Skorb and D.G. Shchukin, Layer–by–Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection, ACS Appl. Mater. Interfaces, 2010, 2, no. 7, 1954–1962. doi: 10.1021/am1002712
24. D. Zhang, J. Lu, C. Shi, K. Zhang, J. Li and L. Gao, Anti–corrosion performance of covalent layer–by–layer assembled films via click chemistry reaction on the copper surface, Corros. Sci., 2021, 178, 109063. doi: 10.1016/j.corsci.2020.109063
25. L. Románszki, M. Mohos, J. Telegdi, Z. Keresztes and L. Nyikos, A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method, Period. Polytech., Chem. Eng., 2014, 58, 53–59. doi: 10.3311/PPch.7188
26. L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu, Wettability of Nanostructured Surfaces, Wetting Wettability, IntechOpen, 2015. doi: 10.5772/60808
27. K. Yasakau, Application of AFM–Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys, Corros. Mater. Degrad., 2020, 1, no. 3, 345–372. doi: 10.3390/cmd1030017
28. É.K. Pfeifer and J. Telegdi, Improved hydrophobicity for better corrosion control by special self–assembled molecular coatings, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1041–1062. doi: 10.17675/2305-6894-2022-11-3-9
29. D. Mikić, H. Otmačić Ćurković and S. Hosseinpour, Bronze corrosion protection by long-chain phosphonic acids, Corros. Sci., 2022, 205, 110445. doi: 10.1016/j.corsci.2022.110445
30. T. Keszthelyi, Z. Pászti, T. Rigó, O. Hakkel, J. Telegdi and L. Guczi, Investigation of Solid Surfaces Modified by Langmuir–Blodgett Monolayers Using Sum–Frequency Vibrational Spectroscopy and X–ray Photoelectron Spectroscopy, J. Phys. Chem. B, 2006, 110, no. 17, 8701–8714. doi: 10.1021/jp057180p
31. J. Wernecke, A.G. Shard and M. Krumrey, Traceable thickness determination of organic nanolayers by X–ray reflectometry, Surf. Interface Anal., 2014, 46, no. 10–11, 911–914. doi: 10.1002/sia.5371
32. V. Petkov, Nanostructure by high–energy X–ray diffraction, Mater. Today, 2008, 11, no. 11, 28–38. doi: 10.1016/S1369-7021(08)70236-0
33. P.M. Kumar, S. Badrinarayanan and M. Sastry, Nanocrystalline TiO 2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films, 2000, 358, no. 1–2, 122–130. doi: 10.1016/S0040-6090(99)00722-1
34. A. Paszternák, I. Felhősi, Z. Pászti, E. Kuzmann, A. Vértes, E. Kálmán and L. Nyikos, Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers, Electrochim. Acta, 2010, 55, no. 3, 804–812. doi: 10.1016/J.ELECTACTA.2009.09.023
35. M. Mantel and J.P. Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surf. Interface Anal., 1994, 21, no. 9, 595–605. doi: 10.1002/sia.740210902
36. L. Somlyai-Sipos and P. Baumli, Wettability of Metals by Water, Metals, 2022, 12, no. 8, 1274. doi: 10.3390/met12081274
37. E.S. Gaúdelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 2002, 123, no. 1, 133–145. doi: 10.1016/S0924-0136(02)00060-2
38. V. Maurice, W.P. Yang and P. Marcus, X–Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100)Fe-18Cr-13Ni Single–Crystal Surfaces, J. Electrochem. Soc., 1998, 145, no. 3, 909. doi: 10.1149/1.1838366
39. C. Dai, T. Zhao, C. Du, Z. Liu and D. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys, J. Mater. Sci. Technol., 2020, 46, 64–73. doi: 10.1016/j.jmst.2019.10.020
40. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao and T. Zhang, Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying, Corros. Sci., 2022, 204, 110396 doi: 10.1016/j.corsci.2022.110396
Рецензия
Для цитирования:
Пфайфер Э.К., Гюрика И.Г., Телегди Ю. Антикоррозионная активность амфифила фосфоновой кислоты в самоорганизующемся молекулярном слое. Коррозия: защита материалов и методы исследований. 2024;(2):13-28. https://doi.org/10.61852/2949-3412-2024-2-2-13-28
For citation:
Pfeifer É.K., Gyurika I.G., Telegdi J. Anticorrosion activity of phosphonic acid amphiphile in self-assembled molecular layer. Title in english. 2024;(2):13-28. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-2-13-28