Preview

Title in english

Advanced search

Anticorrosion activity of phosphonic acid amphiphile in self-assembled molecular layer

https://doi.org/10.61852/2949-3412-2024-2-2-13-28

Abstract

The aim of our experiments was to demonstrate the increase in the corrosion resistance of two stainless steels after nanolayer deposition. The questions we wanted to answer were: how the self–assembled deposition time influences the compactness of the nanolayers and how the steel composition influences the nanofilms deposition, its compactness and the anticorrosion efficiency. To answer these questions self–assembled molecular layers were prepared by dipping technique; the nanolayers were characterized by water wettability values and the two different stainless steel samples with and without nanofilms were subjected to corrosive media (sodium chloride solution). The effect of the chloride ions on the solid surfaces were visualized by atomic force microscopy and characterized by roughness parameters. The anticorrosion efficiency caused by the steel surface compositions as well as by the different self–assembled adsorption time was explained by the experimental data.

About the Authors

É. K. Pfeifer
University of Pannonia, Institute of Material and Mechanical Engineering, Department of Functional and Structural Materials
Hungary

8200 Veszprém, Egyetem Str 10, Veszprém



I. G. Gyurika
University of Pannonia, Institute of Material and Mechanical Engineering, Department of Functional and Structural Materials
Hungary

8200 Veszprém, Egyetem Str 10, Veszprém



J. Telegdi
Functional Interfaces Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences; Óbuda University, Faculty of Light Industry and Environmental Engineering
Hungary

1117 Budapest, Magyar tudósok körútja 2



References

1. H. Assad and A. Kumar, Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds, J. Mol. Liq., 2021, 344, no. 117755. doi: 10.1016/j.molliq.2021.117755

2. D.S. Chauhan, C. Verma and M.A. Quraishi, Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights, J. Mol. Struct., 2021, 1227, no. 129374. doi: 10.1016/j.molstruc.2020.129374

3. E. Kálmán, I. Felhősi, F.H. Kármán, I. Lukovits, J. Telegdi and G. Pálinkás, Environmentally Friendly Corrosion Inhibitors, Materials Science and Technology: A Comprehensive Treatment, Weinheim, Germany, Wiley–VCH Verlag GmbH, 2000, 471–537. doi: 10.1002/9783527619306.ch9

4. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part IV. Passivation and the role of mono- and diphosphonates, Int. J. Corros. Scale Inhib., 2017, 6, no. 4, 384–427. doi: 10.17675/2305-6894-2017-6-4-3

5. C.G. Dariva and A.F. Galio, Corrosion Inhibitors – Principles, Mechanisms and Applications, Dev. Corros. Prot., 2014, 365–379. doi: 10.5772/57255

6. J. Telegdi, Chapter 3 – History of phosphorus-containing corrosion inhibitors: From the beginning till the present time, Water–Formed Deposits, Elsevier, 2022, 49–68. doi: 10.1016/B978-0-12-822896-8.00004-2

7. C. Verma, D.K. Verma, E.E. Ebenso and M.A. Quraishi, Sulfur and phosphorus heteroatom–containing compounds as corrosion inhibitors: An overview, Heteroat. Chem., 2018, 29, no. 4, e21437. doi: 10.1002/hc.21437

8. A. Moschona, N. Plesu, R.M.P. Colodrero, A. Cabeza, A.G. Thomas and K.D. Demadis, Homologous alkyl side–chain diphosphonate inhibitors for the corrosion protection of carbon steels, Chem. Eng. J., 2021, 405, 126864. doi: 10.1016/j.cej.2020.126864

9. J. Telegdi, N-Substituted unusual amino acids as corrosion inhibitors. Part IV: N-Acyl derivatives of unnatural amino acids with double bond, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 360–366. doi: 10.17675/2305-6894-2016-5-4-6

10. J. Telegdi, N-Substituted amino acids as multifunctional additives used in cooling water. Part II: N-carboxymethyl and phosphonomethyl amino acids, Int. J. Corros. Scale Inhib., 2016, 5, no. 2, 183–189. doi: 10.17675/2305-6894-2016-5-2-7

11. Yu.I. Kuznetsov and G.V. Redkina, Thin Protective Coatings on Metals Formed by Organic Corrosion Inhibitors in Neutral Media, Coatings, 2022, 12, no. 2, 149. doi: 10.3390/coatings12020149

12. L.T. Nhiem, D.T.Y. Oanh and N.H. Hieu, Nanocoating toward anti-corrosion: A review, Vietnam J. Chem., 2023, 61, no. 3, 284–293. doi: 10.1002/vjch.202300025

13. A. Jaiswal, R.A. Singh and R.S. Dubey, Inhibition of Copper Corrosion in Aqueous Sodium Chloride Solution by N-Octadecylbenzidine/1-Docosanol Mixed Langmuir–Blodgett Films, Corrosion, 2001, 57, no. 4, 307–312. doi: 10.5006/1.3290354

14. M. Knag, K. Bilkova, E. Gulbrandsen, P. Carlsen and J. Sjöblom, Langmuir–Blodgett films of dococyltriethylammonium bromide and octadecanol on iron. Deposition and corrosion inhibitor performance in CO 2 containing brine, Corros. Sci., 2006, 48, no. 9, 2592–2613. doi: 10.1016/j.corsci.2005.07.013

15. J. Telegdi, T. Rigó, É. Pfeifer, T. Keszthelyi and E. Kálmán, Nanolayer Coatings, Colloids for Nano– and Biotechnology, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 77–86. doi: 10.1007/2882_2008_098

16. J. Telegdi, T. Szabó, L. Románszki and M. Pávai, Chapter 7(20): The use of nano/microlayers, self–healing and slow–release coatings to prevent corrosion and biofouling, Handbook of Smart Coatings for Materials Protection, 2014, 135–182. doi: 10.1533/9780857096883.2.135

17. G.B. Hadjichristov, Y. Marinov, T. Vlakhov and N. Scaramuzza, Chapter Five – Phospholipid Langmuir–Blodgett nano–thin monolayers: Electrical response to cadmium ions and harmful volatile organic compounds, Adv. Biomembr. Lipid Self-Assem., 2021, 34, 129–172. doi: 10.1016/bs.abl.2021.11.005

18. J. Telegdi, Formation of Self–Assembled Anticorrosion Films on Different Metals, Materials, 2020, 13, no. 22, 5089. doi: 10.3390/ma13225089

19. T. Abohalkuma, F. Shawish and J. Telegdi, Phosphonic acid derivatives used in self–assembled layers against metal corrosion, Int. J. Corros. Scale Inhib., 2014, 3, no. 3, 151–159. doi: 10.17675/2305-6894-2014-3-3-151-159

20. Z.H. Gretić, E.K. Mioč, V. Čadež, S. Šegota, H. Otmačić Ćurković and S. Hosseinpour, The Influence of Thickness of Stearic Acid Self–Assembled Film on Its Protective Properties, J. Electrochem. Soc., 2016, 163, no. 14, 937–944. doi: 10.1149/2.1461614jes

21. J. Telegdi, G. Luciano, S. Mahanty and T. Abohalkuma, Inhibition of aluminum alloy corrosion in electrolytes by self–assembled fluorophosphonic acid molecular layer, Mater. Corros., 2016, 67, no. 10, 1027–1033. doi: 10.1002/maco.201508792

22. M. Petrunin, A. Rybkina, T. Yurasova and L. Maksaeva, Effect of Organosilicon Self–Assembled Polymeric Nanolayers Formed during Surface Modification by Compositions Based on Organosilanes on the Atmospheric Corrosion of Metals, Polymers, 2022, 14, no. 20, 4428. doi: 10.3390/polym14204428

23. D.V. Andreeva, E.V. Skorb and D.G. Shchukin, Layer–by–Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection, ACS Appl. Mater. Interfaces, 2010, 2, no. 7, 1954–1962. doi: 10.1021/am1002712

24. D. Zhang, J. Lu, C. Shi, K. Zhang, J. Li and L. Gao, Anti–corrosion performance of covalent layer–by–layer assembled films via click chemistry reaction on the copper surface, Corros. Sci., 2021, 178, 109063. doi: 10.1016/j.corsci.2020.109063

25. L. Románszki, M. Mohos, J. Telegdi, Z. Keresztes and L. Nyikos, A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method, Period. Polytech., Chem. Eng., 2014, 58, 53–59. doi: 10.3311/PPch.7188

26. L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu, Wettability of Nanostructured Surfaces, Wetting Wettability, IntechOpen, 2015. doi: 10.5772/60808

27. K. Yasakau, Application of AFM–Based Techniques in Studies of Corrosion and Corrosion Inhibition of Metallic Alloys, Corros. Mater. Degrad., 2020, 1, no. 3, 345–372. doi: 10.3390/cmd1030017

28. É.K. Pfeifer and J. Telegdi, Improved hydrophobicity for better corrosion control by special self–assembled molecular coatings, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1041–1062. doi: 10.17675/2305-6894-2022-11-3-9

29. D. Mikić, H. Otmačić Ćurković and S. Hosseinpour, Bronze corrosion protection by long-chain phosphonic acids, Corros. Sci., 2022, 205, 110445. doi: 10.1016/j.corsci.2022.110445

30. T. Keszthelyi, Z. Pászti, T. Rigó, O. Hakkel, J. Telegdi and L. Guczi, Investigation of Solid Surfaces Modified by Langmuir–Blodgett Monolayers Using Sum–Frequency Vibrational Spectroscopy and X–ray Photoelectron Spectroscopy, J. Phys. Chem. B, 2006, 110, no. 17, 8701–8714. doi: 10.1021/jp057180p

31. J. Wernecke, A.G. Shard and M. Krumrey, Traceable thickness determination of organic nanolayers by X–ray reflectometry, Surf. Interface Anal., 2014, 46, no. 10–11, 911–914. doi: 10.1002/sia.5371

32. V. Petkov, Nanostructure by high–energy X–ray diffraction, Mater. Today, 2008, 11, no. 11, 28–38. doi: 10.1016/S1369-7021(08)70236-0

33. P.M. Kumar, S. Badrinarayanan and M. Sastry, Nanocrystalline TiO 2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films, 2000, 358, no. 1–2, 122–130. doi: 10.1016/S0040-6090(99)00722-1

34. A. Paszternák, I. Felhősi, Z. Pászti, E. Kuzmann, A. Vértes, E. Kálmán and L. Nyikos, Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers, Electrochim. Acta, 2010, 55, no. 3, 804–812. doi: 10.1016/J.ELECTACTA.2009.09.023

35. M. Mantel and J.P. Wightman, Influence of the surface chemistry on the wettability of stainless steel, Surf. Interface Anal., 1994, 21, no. 9, 595–605. doi: 10.1002/sia.740210902

36. L. Somlyai-Sipos and P. Baumli, Wettability of Metals by Water, Metals, 2022, 12, no. 8, 1274. doi: 10.3390/met12081274

37. E.S. Gaúdelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman, Roughness parameters, J. Mater. Process. Technol., 2002, 123, no. 1, 133–145. doi: 10.1016/S0924-0136(02)00060-2

38. V. Maurice, W.P. Yang and P. Marcus, X–Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100)Fe-18Cr-13Ni Single–Crystal Surfaces, J. Electrochem. Soc., 1998, 145, no. 3, 909. doi: 10.1149/1.1838366

39. C. Dai, T. Zhao, C. Du, Z. Liu and D. Zhang, Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys, J. Mater. Sci. Technol., 2020, 46, 64–73. doi: 10.1016/j.jmst.2019.10.020

40. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao and T. Zhang, Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying, Corros. Sci., 2022, 204, 110396 doi: 10.1016/j.corsci.2022.110396


Review

For citations:


Pfeifer É.K., Gyurika I.G., Telegdi J. Anticorrosion activity of phosphonic acid amphiphile in self-assembled molecular layer. Title in english. 2024;(2):13-28. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-2-13-28

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.