Preview

Title in english

Advanced search

Corrosion resistance of structural metals with different sample orientations at different distances from the seashore

https://doi.org/10.61852/2949-3412-2024-2-2-29-44

Abstract

The rates of chloride deposition on the surface of the material were determined using different types of samplers, and linear correlation coefficients between the sampler data were calculated. An exponential dependence of the average annual rate of chloride deposition on the distance to the seashore was obtained. The categories of corrosive aggressiveness of the atmosphere were determined for different orientations of samples of carbon steel, zinc, copper and aluminum and at different distances from the seashore.

About the Authors

Y. M. Panchenko
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



A. I. Marshakov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



T. A. Nenasheva
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



T. N. Igonin
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



A. E. Kutyrev
All-Russian Research Institute of Aviation Materials of the National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute» – VIAM)
Russian Federation

17 Radio St., Moscow, 105005



M. A. Fomina
All-Russian Research Institute of Aviation Materials of the National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute» – VIAM)
Russian Federation

17 Radio St., Moscow, 105005



A. I. Vdovin
All-Russian Research Institute of Aviation Materials of the National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute» – VIAM)
Russian Federation

17 Radio St., Moscow, 105005



References

1. I.S. Cole, D.A. Paterson, W.D. Ganther, A. Neufeld, B. Hinton, G. McAdam, M. McGeachie, R. Jeffery, L. Chotimongkol, C. Bhamornsut, N.V. Hue and S. Purwadaria, Holistic model for atmospheric corrosion – Part 3 – Effect of natural and man made landforms on precipitation of marine salts in Australia and south-east Asia, Corros. Eng. Sci. Technol., 2003, 38, no. 4, 267–274. doi: 10.1179/147842203225008921

2. M.J. Ten Harkel, The effects of particle-size distribution and chloride depletion of sea- salt aerosols on estimating atmospheric precipitation at a coastal site, Atmos. Environ., 1997, 31, no. 3, 417–427. doi: 10.1016/S1352-2310(96)00249-X

3. M. Morcillo, B. Chico, E. Otero and L. Mariaca, Effect of marine aerosol on atmospheric corrosion, Mater. Perform., 1999, 38, 72–77.

4. S. Feliu, M. Morcillo and B. Chico, Effect of distance from sea on atmospheric corrosion rate, Corrosion, 1999, 55, no. 9, 883–891. doi: 10.5006/1.3284045

5. I.S. Cole, W.D. Ganther, D.A. Paterson, G.A. King, S.A. Furman and D. Lau, Holistic model for atmospheric corrosion – Part 2. Experimental measurement of precipitation of marine salts in a number of long range studies, Corros. Eng. Sci. Technol., 2003, 38, no. 4, 259–266. doi: 10.1179/147842203225008886

6. I.S. Cole, W.Y. Chan, G.S. Trinidad and D.A. Paterson, Holistic model for atmospheric corrosion – Part 4. Geographic information system for predicting airborne salinity, Corros. Eng. Sci. Technol., 2004, 39, no. 1, 89–96. doi: 10.1179/147842204225016831

7. G.R. Meira, M.C. Andrade, I.J. Padaratz, M.C. Alonso and J.C. Borba, Measurements and modelling of marine salt transportation and precipitation in a tropical region in Brazil, Atmos. Environ., 2006, 40, no. 29, 5596–5607. doi: 10.1016/j.atmosenv.2006.04.053

8. H.Guan, A.J. Love, C.T. Simmons, O. Makhnin and A.S. Kayaalp, Factors influencing chloride deposition in a coastal hilly area and application to chloride deposition mapping, Hydrol. Earth Syst. Sci., 2010, 14, 801–813. doi: 10.5194/hess-14-801-2010

9. J.Alcántara, B. Chico, I. Díaz, D. de la Fuente and M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci., 2015, 97, 74–88. doi: 10.1016/j.corsci.2015.04.015

10. M. Vacek, V. Křivý, K. Kreislová, M. Vlachová and M. Kubzová, Experimental Measurement of Deposition Chloride Ions in the Vicinity of Road Cut, Materials, 2023, 16, no. 1, 88. doi: 10.3390/ma16010088

11. J.J.S. Lee and H.J. Moon, Salinity distribution of seashore concrete structures in Korea, Building and Environment, 2006, 41, no. 10, 1447–1453. doi: 10.1016/j.buildenv.2005.05.030

12. G.R. Meira, C. Andrade, C. Alonso, J.C. Borba and M. Padilha, Durability of concrete structures in marine atmosphere zones – The use of chloride deposition rate on the wet candle as an environmental indicator, Cement & Concrete Composites, 2010, 32, no. 6, 427–435. doi: 10.1016/j.cemconcomp.2010.03.002

13. A. Castañeda, J. J. Howland Albear, F. Corvo and R. Marrero, Estudio de la agresividad corrosiva de la atmósfera para el acero de refuerzo embebido en el hormigón armado en La Habana, Rev. Lat. Met. Mater., 2015, 35, no. 2, 173–188.

14. I.S. Cole, D.A. Paterson and W.D. Ganther, Holistic model for atmospheric corrosion. Part 1. Theoretical framework for production, transportation and deposition of marine salts, Corros. Eng., Sci. Technol., 2003, 38, no 2, 129–134. doi: 10.1179/147842203767789203

15. I.S. Cole and D.A. Paterson, Holistic model for atmospheric corrosion. Part 5. Factors controlling precipitation of salt aerosol on candles, plates and buildings, Corros. Eng., Sci. Technol., 2004, 39, no 2, 125–130. doi: 10.1179/147842204225016949

16. I.S. Cole, D.A. Paterson and D. Lau: in book “Physical techniques in the study of art, archaeology and cultural heritage”, (ed. D. Creagh and D. Bradley), Amsterdam, Elsevier, 2007, Chap. 3, 115–153.

17. ISO 8407:2021. Corrosion of metals and alloys - Removal of corrosion products from corrosion test specimens. International Standards Organization.

18. ISO 9225-2012. Corrosion of metals and alloys – Corrosivity of atmospheres – Measurement of environmental parameters affecting corrosivity of atmospheres. International Standards Organization, Geneva, 2012.

19. Y.Panchenko, A.Marshakov, L.Nikolaeva and T.Igonin, Corrosion resistance of structural metals depending on the sample orientation and initial exposure conditions in coastal and rural atmospheres. Part 1. Corrosivity toward structural metals at coastal and rural test sites under various exposure conditions, Corros. Eng., Sci. Technol., 2020, 55, no. 8, 655–669. doi:10.1080/1478422X.2020.1772535

20. ГОСТ-9.107-2023. Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы. Основные положения.


Review

For citations:


Panchenko Y.M., Marshakov A.I., Nenasheva T.A., Igonin T.N., Kutyrev A.E., Fomina M.A., Vdovin A.I. Corrosion resistance of structural metals with different sample orientations at different distances from the seashore. Title in english. 2024;(2):29-44. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-2-29-44

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.