Preview

Title in english

Advanced search

Corrosion protection of aluminum alloy AMg6 from corrosion by conversion cerium-containing coatings

https://doi.org/10.61852/2949-3412-2024-2-2-68-80

Abstract

A solution has been developed for applying protective-adhesive cerium-containing coatings to the surface of the AMg6 aluminum alloy in order to replace the toxic chromating process in the automotive and other industries.

The developed solution contains: 5-10 g/l Ce(NO3)3·6H2O, 30-40 ml/l H2O2 and 0,5-1,5 g/l tannin.

Coatings with the best physical-chemical characteristics are formed in a solution with pH=2-3 at a temperature of 18-25°C and a process duration of 10-15 minutes. The optimum drying temperature is 120-160°C.

The coatings formed under these conditions consist of cerium oxides CeO2, Ce2O3 and aluminum oxide Al2O3. The addition of a tannin (in an amount of 0,5-1,5 g/l) to the working solution leads to a change in the chemical composition of the forming coatings, namely, to the exclusion of CeO2 compounds in their composition. This increases the protective ability of coatings.

The developed solution for the formation of protective-adhesive coatings on aluminum is an alternative to toxic chromating solutions.

About the Authors

A. V. Sundukova
Dmitry Mendeleev University of Chemical Тесhnоlоgy of Russia
Russian Federation

Miusskaya square, 9, Moscow 125047



A. A. Abrashov
Dmitry Mendeleev University of Chemical Тесhnоlоgy of Russia
Russian Federation

Miusskaya square, 9, Moscow 125047



N. S. Grigoryan
Dmitry Mendeleev University of Chemical Тесhnоlоgy of Russia
Russian Federation

Miusskaya square, 9, Moscow 125047



A. I. Hafizova
Dmitry Mendeleev University of Chemical Тесhnоlоgy of Russia
Russian Federation

Miusskaya square, 9, Moscow 125047



T. A. Vagramyan
Dmitry Mendeleev University of Chemical Тесhnоlоgy of Russia
Russian Federation

Miusskaya square, 9, Moscow 125047



References

1. М.В. Лушина и С.Г. Паршин, Инновационные технологии антикоррозионной защиты изделий из алюминиевых сплавов, Морской вестник, 2011, 1(37), 113-115.

2. M.W. Kendig and R.G. Buchheit, Corrosion Inhibition of Aluminum and Aluminum Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coatings. CORROSION, 2003, 59, no. 5, 379-399. doi: 10.5006/1.3277570

3. S. Gheytani, Y. Liang, J. Yan and J.Q. Xu, Chromate conversion coated aluminium as lightweight and corrosion-resistant current collector for aqueous lithium-ion batteries, J. Mater. Chem. A, 2016, 4, 395-399. doi: 10.1039/C5TA07366A

4. A.E. Hughes and R.J. Taylor, Chromate Conversion Coatings on 2024 Al Alloy, Surf. Interface Anal., 1997, 25, no. 4, 223-234. doi: 10.1002/(SICI)1096-9918(199704)25:4<223::AID-SIA225>3.0.CO;2-D

5. J. Zhao, L. Xia, A. Sehgal and D. Lu, Effects of chromate conversion coatings on corrosion of aluminium alloy 2024-T3, Surf. Coat. Technol., 2001, 140, no.1, 51-57. doi: 10.1016/S0257-8972(01)01003-9

6. Directive 2000/53/EC of the Parliament and the Council of Europe on September 18, 2000 “End-of-live-vehicles”, Off. J. Eur. Communities, L269, pp. 34–43.

7. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment.

8. Directive 2011/65 / EC (RoHS II) of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

9. A.B. Harris, Replacement hexavalent chromium in automotive industry for ELV Directive. Technical paper, Sur/Fin. 6/2002.

10. С.В. Олейник и Ю.И. Кузнецов‚ Ингибиторы коррозии в конверсионных покрытиях. Ч. IV, Защита металлов, 2007, 43, 421-428.

11. M.M. Rahman, Md.H. Zahir, Md.B. Haq, D.A. Al Shehri and A.M. Kumar, Corrosion Inhibition Properties of Waterborne Polyurethane/Cerium Nitrate Coatings on Mild Steel, Coatings, 2018, 8, 34; doi: 10.3390/coatings8010034

12. M. Gobara, A. Baraka, R. Akid and M. Zorainy, Corrosion protection mechanism of Ce4+/organic inhibitor for AA2024 in 3.5% NaCl, RSC Advances, 2020, 10, 2227-2240. doi: 10.1039/C9RA09552G

13. M. Dabala, E. Ramous and M. Magrini, Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy, Materials and Corrosion, 2004, 55, 381-386. doi: 10.1002/maco.200303744

14. Woicik and C. Joseph, Hard X-ray Photoelectron Spectroscopy (HAXPES), Springer International Publishing: ChamCity, Switzerland, 2016, p. 571.

15. B. Valdez, S. Kiyota, M. Stoytcheva, R. Zlatev and J.M. Bastidas Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6, Corros. Sci., 2014, 87, 141-149, doi: 10.1016/j.corsci.2014.06.023.

16. M. Kurtela, V. Šimunović, I. Stojanović and V. Alar, Effect of the cerium (III) chloride heptahydrate on the corrosion inhibition of aluminum alloy, Materials and Corrosion, 2020, 71, 125-147. doi: 10.1002/maco.201911057


Review

For citations:


Sundukova A.V., Abrashov A.A., Grigoryan N.S., Hafizova A.I., Vagramyan T.A. Corrosion protection of aluminum alloy AMg6 from corrosion by conversion cerium-containing coatings. Title in english. 2024;(2):68-80. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-2-68-80

Views: 136


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.