Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Адсорбция анионов 2-алкилмалоновых кислот на меди и защита ее от коррозии в хлоридных растворах

https://doi.org/10.61852/2949-3412-2024-2-2-81-94

Аннотация

Адсорбция на окисленной поверхности меди из боратного буфера (pH 7,4), анионов солей алкилмалоновых кислот (АМК), с алкилами, содержащими разное число углеродных атомов, nC, измеренная эллипсометрическим методом при Е = 0,0 В адекватно описывается полным уравнением изотермы Темкина. Величина стандартной свободной энергии адсорбции (–∆G0a ) для их анионов составляет 47,7 кДж/моль для малоната и достигает 83,9 кДж/моль для нонилмалоната натрия. Это свидетельствует о химической природе адсорбции. Коррозионное поведение меди в водных растворах натриевых солей изучено методами поляризационных и коррозионных испытаний. Добавление 2 ммоль/л солей АМК в боратный буфер, содержащий 10 ммоль/л NaCl, замедляет анодное растворение меди, увеличивая ее потенциал локальной депассивации (Епт). Чем длиннее алкил в ингибиторе, тем более выражены его пассивационные эффекты. Семидневные коррозионные испытания меди в 10 ммоль/л растворе NaCl, проведенные в присутствии солей алкилмалоновых кислот, показали, что защитный эффект возрастает с увеличением, как концентрации ингибитора Cин, так и nC. В диапазоне Cин = 0,5–3 ммоль/л степень защиты меди анионами малоновой кислоты увеличивается с 26 до 76%, а нонилмалоновой кислоты с 66 до 95%, доказывает эффективность хемосорбции при защите от коррозии меди нонилмалоната натрия.

Об авторах

И. А. Кузнецов
Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Россия

Ленинский просп.31, корп. 4, Москва, 119071



Н. П. Андреева
Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Россия

Ленинский просп.31, корп. 4, Москва, 119071



М. О. Агафонкина
Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Россия

Ленинский просп.31, корп. 4, Москва, 119071



Список литературы

1. Corrosion Inhibitors, A Working Party Report of European Federation of Corrosion Inhibitors, 1994, London, The Institute of Materials, 163 pp.

2. Yu.I. Kuznetsov, Organic Inhibitors of Corrosion of Metals, New York, Plenum Press, 1996, 283 pp.

3. G. Schmitt, Corrosion Inhibitors in the Mirror of the Ferrara Conferences, In Proceedings of 10th European Symposium on Corrosion and Scale Inhibitors, 2005, Ferrara (Italy), University of Ferrara, 2, 1075–1116.

4. M.B. Petrović Mihajlović and M.M. Antonijević, Copper Corrosion Inhibitors. Period 2008–2014. A Review, Int. J. Electrochem. Sci., 2015, 10, 1027–1053. doi: 10.1016/S1452-3981(23)05053-8

5. Yu.I. Kuznetsov and L.P. Kazansky, Physicochemical aspects of metal protection by azoles, Russ. Chem. Rev., 2008, 77, 219–232. doi: 10.1070/RC2008v077n03ABEH003753

6. Z. Chen, L. Huang, G. Zhang, Y. Qui and X. Guo, Benzotriazole as a volatile corrosion inhibitor during the early stage of copper corrosion under adsorbed thin electrolyte layers, Corros. Sci., 2012, 65, 214–222. doi: 10.1016/j.corsci.2012.08.019

7. N.K. Allam, A.A. Nazeer and E.A. Ashour, A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments, J. Appl. Electrochem., 2009, 39, 961–969. doi: 10.1007/s10800-009-9779-4

8. M. Finšgar and I. Milošev, Inhibition of copper corrosion by 1,2,3-benzotriazole: A review, Corros. Sci., 2010, 52, 2737–2749. doi: 10.1016/j.corsci.2010.05.002

9. D. Gopi, K.M. Govindaraju, V.C.A. Prakash, D.M.A Sakila and L. Kavitha, A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water, Corros. Sci., 2009, 51, 2259–2265. doi: 10.1016/j.corsci.2009.06.008

10. I. Dugdale and J.B. Cotton, An electrochemical investigation on the prevention of staining of copper by benzotriazole, Corros. Sci., 1963, 3, 69–74. doi: 10.1016/S0010- 938X(63)80001-3

11. N. Kovačević, I. Milošev and A. Kokalj, How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper?, Corros. Sci., 2017, 124, 25–34. doi: 10.1016/j.corsci.2017.04.021

12. F. Grillo, D.W. Tee, S.M. Francis, H.A. Früchtl and N.V. Richardson, Passivation of Copper: Benzotriazole Films on Cu(111), J. Phys. Chem. C, 2014, 118, 8667–8675. doi: 10.1021/jp411482e

13. G. Rajkumar and M.G. Sethuraman, Corrosion protection ability of self-assembled monolayer of 3-amino-5-mercapto-1,2,4-triazole on copper electrode, Thin Solid Films, 2014, 562, 32–36. doi: 10.1016/j.tsf.2014.03.074

14. A. Kokalj, Ab initio modeling of the bonding of benzotriazole corrosion inhibitor to reduced and oxidized copper surfaces, Faraday Discuss., 2015, 180, 415–438. doi: 10.1039/C4FD00257A

15. B. Lin and Y. Zuo, Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution, RSC Adv., 2019, 9, 7065–7077. doi: 10.1039/c8ra10083g

16. E. Rocca, G. Bertrand, C. Rapin and J.C. Labrune, Inhibition of copper aqueous corrosion by non-toxic linear sodium heptanoate: mechanism and ECAFM study, J. Electroanal. Chem., 2001, 503, 133–140. doi: 10.1016/S0022-0728(01)00384-9

17. E. Abelev, D. Starosvetsky and Y. Ein-Eli, Enhanced Copper Surface Protection in Aqueous Solutions Containing Short-Chain Alkanoic Acid Potassium Salts, Langmuir, 2007, 23, 11281–11288. doi: 10.1021/la701434e

18. S. Ramesh and S. Rajeswari, Evaluation of inhibitors and biocide on the corrosion control of copper in neutral aqueous environment, Corros. Sci., 2005, 47, 151–169. doi: 10.1016/j.corsci.2004.05.013

19. A. Fateh, M. Aliofkhazraei and A.R. Rezvanian, Review of Corrosive Environments for Copper and its Corrosion Inhibitors, Arabian J. Chem., 2017, 13, 481–544. doi: 10.1016/j.arabjc.2017.05.021

20. H. Tian, W. Li, K. Cao and B. Hou, Potent inhibition of copper corrosion in neutral chloride media by novel non-toxic thiadiazole derivatives, Corros. Sci., 2013, 73, 281–291. doi: 10.1016/j.corsci.2013.04.017

21. T. Liu, Y. Yin, S. Chen, X. Chang and S. Cheng, Super-hydrophobic surfaces improve corrosion resistance of copper in seawater, Electrochim. Acta, 2007, 52, 3709–3713. doi: 10.1016/j.electacta.2006.10.059

22. T. Liu, S. Chen, S. Cheng, J. Tian, X. Chang and Y. Yin, Corrosion behavior of super-hydrophobic surface on copper in seawater, Electrochim. Acta, 2007, 52, 8003–8007. doi: 10.1016/j.electacta.2007.06.072

23. P. Wang, R. Qiu, D. Zhang, Z. Lin and B. Hou, Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection, Electrochim. Acta, 2010, 56, 517–522. doi: 10.1016/j.electacta.2010.09.017

24. Y. Huang, D.K. Sarkar and X.–G. Chen, A one-step process to engineer super-hydrophobic copper surfaces, Mater. Lett., 2010, 64, 2722–2724 doi: 10.1016/j.matlet.2010.09.010

25. Y. Huang, D.K. Sarkar, D. Gallant and X-G. Chen, Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process, Appl. Surf. Sci., 2013, 282, 689–694. doi: 10.1016/j.apsusc.2013.06.034

26. P. Wang, D. Zhang and Z. Lu, Advantage of Super-hydrophobic Surface as a Barrier against Atmospheric Corrosion Induced by Salt Deliquescence, Corros. Sci., 2015, 90, 23–32. doi: 10.1016/j.corsci.2014.09.001

27. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part II. Passivation and the role of chemical structure of carboxylates, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 282–318. doi: 10.17675/2305-6894-2016-5-4-1

28. U. Rammelt, S. Köhler and G. Reinhard, Electrochemical characterization of the ability of dicarboxylic acid salts to the corrosion inhibition of mild steel in aqueous solutions, Corros. Sci., 2011, 53, 3515–3520. doi: 10.1016/j.corsci.2011.06.023

29. K. Aramaki and T. Shimura, Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film breakdown, Corros. Sci., 2004, 46, 313–328. doi: 10.1016/S0010-938X(03)00156-2

30. G.T. Hefter, N.A. North and S.H. Tan, Organic corrosion inhibitors in neutral solutions. Part 1. Inhibition of steel, copper and aluminum by straight chain carboxylates, Corrosion, 1997, 53, 657–667. doi: 10.5006/1.3290298

31. Yu.I. Kuznetsov, M.O. Agafonkina, N.P. Andreeva and L.P. Kazansky, Adsorption of dimegin and inhibition of copper dissolution in aqueous solutions, Сorros. Sci., 2015, 100, 535–543. doi: 10.1016/j.corsci.2015.08.028

32. O.Yu. Grafov, L.P. Kazansky, S.V. Dubinskaya and Yu.I. Kuznetsov, Adsorption of depocolin and inhibition of copper dissolution in aqueous solutions, Int. J. Corros. Scale Inhib., 2019, 8, no. 3, 549–559. doi: 10.17675/2305-6894-2019-8-3-6

33. М.О. Аgafonkina, I.А. Kuznetsov, N.P. Andreeva and Yu.I. Kuznetsov, Copper protection with sodium salts of lower dicarboxylic acids in aqueous neutral solutions, Int. J. Corros. Scale Inhib., 2020, 9, no. 3, 1000–10013. doi: 10.17675/2305-6894-2020- 9-3-13

34. Yu.I. Kuznetsov, I.A. Kuznetsov and D.B. Vershok, Protection of copper against corrosion in neutral media by dicarboxylic acid salts, Int. J. Corros. Scale Inhib., 2019, 8, no. 4, 1022–1034. doi: 10.17675/2305-6894-2019-8-4-13

35. D.E. Aspnes, Spectroscopic ellipsometry – Past, present, and future, Thin Solid Films, 2014, 571, 334–344. doi: 10.1016/j.tsf.2014.03.056

36. L. Wang, C. Zhao, M.H.G. Duits, F. Mugele and I. Siretanu, Detection of ion adsorption at solid–liquid interfaces using internal reflection ellipsometry, Sens. Actuators, B, 2015, 210, 649–655. doi: 10.1016/j.snb.2014.12.127

37. R. Longtin, L. Mureşan, M. Porus, P. Maroni, S. Rentsch, M. Buri, P. Gane and M. Borkovec, Probing adsorption of sodium poly(acrylate) at the calcite–water interface by ellipsometry, Colloids Surf., A, 2011, 384, 17–22. doi: 10.1016/j.colsurfa.2011.02.041

38. M. Levin, P. Wiklund and C. Leygraf, Bioorganic compounds as copper corrosion inhibitors in hydrocarbon media, Corros. Sci., 2012, 58, 104–114. doi: 10.1016/j.corsci.2012.01.009

39. W. Ogieglo, H. Wormeester, K-J. Eichhorn, M. Wessling and N.E. Benes, In situ ellipsometry studies on swelling of thin polymer films: A review, Prog. Polym. Sci., 2015, 42, 42–78. doi: 10.1016/j.progpolymsci.2014.09.004

40. М.О. Agafonkina, N.P. Andreeva, Yu.I. Kuznetsov and S.F. Timashev, Substituted Benzotriazoles as Inhibitors of Copper Corrosion in Borate Buffer Solutions, Russ. J. Phys. Chem. A, 2017, 91, 1414–1421. doi: 10.1134/S0036024417080027

41. F.L. McCrackin, A Fortran Program for Analysis of Ellipsometer Measurements, NBS, Technical note 479, 1969.

42. N.P. Andreeva, M.O. Agafonkina and Yu.I. Kuznetsov, Features of the carboxylates adsorption on copper, A.N. Frumkin Institute of physical chemistry and electrochemistry. 90th Anniversary. Collection of scientific works, 2019, 246–248 (in Russian).


Рецензия

Для цитирования:


Кузнецов И.А., Андреева Н.П., Агафонкина М.О. Адсорбция анионов 2-алкилмалоновых кислот на меди и защита ее от коррозии в хлоридных растворах. Коррозия: защита материалов и методы исследований. 2024;(2):81-94. https://doi.org/10.61852/2949-3412-2024-2-2-81-94

For citation:


Kuznetsov I.A., Andreeva N.P., Agafonkina M.O. Possibility of protecting copper from corrosion in chloride solutions with salts of 2-alkylmalonic acids. Title in english. 2024;(2):81-94. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-2-81-94

Просмотров: 76


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.