Preview

Title in english

Advanced search

Vapor-phase deposition of polymer films based on silanes for corrosion protection of AMg3 aluminum alloy

https://doi.org/10.61852/29493412202422108121

Abstract

Silicone primers based on silanes are often used to increase adhesion between the metal surface and the paint coating. At the same time, it is possible to apply polymer films from organosilanes using vapor phase deposition. This method makes it possible to obtain uniform thin polymer layers with high barrier properties. In this work, the adsorption and polymerization of vinyltrimethoxysilane on the surface of the AMg3 aluminum alloy in the presence of water vapor and ethylene glycol was studied. It has been shown that ethylene glycol is an effective promoter of polymerization due to crosslinking of hydroxyl and ethanol groups during the polycondensation of silane and ethylene glycol molecules on the metal surface. Using X ray photoelectron microanalysis and corrosion electrochemical methods, the protective properties of the resulting polymer films and their interaction with the initial surface of the AMg3 aluminum alloy and oxidized in the converting composition IFKhANAL-2 were studied. It has been shown that impregnation of oxide coatings with organosilanes using the vapor phase deposition method significantly increases their corrosion resistance.

About the Authors

Yu. B. Makarychev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071 Moscow



Yu. A. Kuzenkov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071 Moscow



D. O. Chugunov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071 Moscow



O. Yu. Grafov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071 Moscow



A. D. Aliev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071 Moscow



References

1. G. Yoganandan and J.N. Balaraju, Synergistic effect of V and Mn oxyanions for the corrosion protection of anodized aerospace aluminum alloy, Surf. Coat. Technol., 2014, 252, 15, 35 47 doi: 10.1016/j.surfcoat.2014.04.062

2. O. Zubillaga, F.J. Cano, I. Azkarate, I.S. Molchan, G.E. Thompson and P. Skeldon, Anodic films containing polyaniline and nanoparticles for corrosion protection of AA2024T3 aluminium alloy, Surf. Coat. Technol., 2009,203(10-11), 1494-1501 doi: 10.1016/j.surfcoat.2008.11.023

3. Ю.А. Кузенков, С.В. Олейник, Н.П. Нырков и И.А. Архипушкин, Ультратонкие конверсионные покрытия на алюминиевом сплаве АМг3. Ч. II. Модификация покрытия для его применения в качестве праймера под порошковую краску, Коррозия: материалы, защита, 2021, 7, 36-41 doi: 10.31044/1813-7016-2021-0-7-36-41

4. R.del Olmo, M. Mohedano, E. Matykina and R. Arrabal, Permanganate loaded Ca Al LDH coating for active corrosion protection of 2024 T3 alloy, Corros. Sci., 2022, 198, 110144 doi: 10.1016/j.corsci.2022.110144

5. Z. She, Q. Li, S. Wang, F. Luo, F. Chen and L. Li, Inhibiting and healing effects of potassium permanganate for silane films, Thin Solid Films, 2013, 539, 139 144 doi: 10.1016/j.tsf.2013.05.099

6. M. Zhang, J. Lu, P. Li, X. Li, G. Yuan and Y. Zuo, Construction of high efficiency fixing structure of waterborne paint on silicate modified poplar surfaces by bridging with silane coupling agents, Prog. Org. Coat., 2022, 167, 106846 doi: 10.1016/j.porgcoat.2022.106846

7. Wim J. Van Ooij, V. Subramanian and C. Zhang, Method of preventing corrosion of metals using silanes, US Patent #6261638, 1998 01 08.

8. I. De Graeve, E. Tourwé, M. Biesemans, R. Willem and H. Terryn, Silane solution stability and film morphology of water based bis 1,2-(triethoxysilyl)ethane for thin film deposition on aluminium, Prog. Org. Coat., 2008, 63(1), 38-42 doi: 10.1016/j.porgcoat.2008.04.002

9. А.М. Семилетов, Защита алюминиевых сплавов АМг6 и Д16 от атмосферной коррозии водными растворами ингибиторов. Коррозия: защита материалов и методы исследований, 2023, 1(3), 102-113.

10. Yu.B. Makarychev, A.Yu. Luchkin, O.Yu. Grafov and N.N. Andreev, Vapor-phase deposition of polymer siloxane coatings on the surface of copper and low-carbon steel, Int. J. Corros. Scale Inhib., 2022, 11(3), 980–1000 doi: 10.17675/2305-6894-2022-11-3-6

11. O.A. Goncharova, A.Yu. Luchkin, I.A. Archipushkin, N.N. Andreev and Yu.I. Kuznetsov, Vapor-phase protection of steel by inhibitors based on salts of higher carboxylic acids, Int. J. Corros. Scale Inhib, 2019, 8(3), 586–599 doi: 10.17675/2305-6894-2019-8-3-9

12. Ю.И. Кузнецов и Н.Н. Андреев, Защита металлов от коррозии в парогазовой фазе. Обзор. Ч.1. Летучие ингибиторы коррозии. Коррозия: защита материалов и методы исследований, 2023, 1(2), 1–15.

13. И.Л. Розенфельд и В.П. Персианцева, Ингибиторы атмосферной коррозии. М.:Наука, 1985, 277 с.

14. Ю.А. Кузенков, А.С. Коновалов, О.Ю. Графов и А.Ю. Лучкин, Модификация ультратонких конверсионных покрытий на алюминиевом сплаве АМг3 и их взаимодействие с лакокрасочным покрытием, Коррозия: защита материалов и методы исследований, 2023, 1(2), 37–48.

15. J.H. Scofield, Hartree-Slater Subshell Photoionization Cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129–137.

16. D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev., 1972, 5, 4709–4713.

17. M. Mohai, XPS MultiQuant: multimodel XPS quantification software, Surf. Interface Anal., 2004, 36(8), 828–832. doi: 10.1002/sia.1775

18. M. Mohai, I. Bertoti, Calculation of overlayer thickness on curved surfaces based on XPS intensities, Surf. Interface Anal., 2004, 36(8), 805–808. doi: 10.1002/sia.1769


Review

For citations:


Makarychev Yu.B., Kuzenkov Yu.A., Chugunov D.O., Grafov O.Yu., Aliev A.D. Vapor-phase deposition of polymer films based on silanes for corrosion protection of AMg3 aluminum alloy. Title in english. 2024;(2):108-121. (In Russ.) https://doi.org/10.61852/29493412202422108121

Views: 91


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.