The role of acid-base interactions in metal corrosion. Review
https://doi.org/10.61852/2949-3412-2024-2-3-1-43
Abstract
This review presents an electrode-kinetic model of the origin of aluminum pitting corrosion, taking into account the charge of the metal surface, the adsorption of chloride ions on the oxide surface, their penetration through the oxide film using oxygen vacancies and the initiation of pitting corrosion at the metal/oxide interface. It is shown that the critical potential of pitting formation is a function of the potential of a thin layer of a metal (aluminum) surface coated with an oxide, and the value of the pitting potential of binary surface alloying is related to the isoelectric point of the oxide of the alloying element in the binary alloy. An electrode-kinetic model of the occurrence of pitting is described, which is used to explain the effect of surface alloying on the occurrence of pitting in binary alloys. A method for changing the surface charge is proposed, including the formation of foreign surface organosilicon nanolayers carrying both negatively and positively charged groups. It is shown that four characteristics (charge (q), surface potential (Ψ1), critical pitting potential (Epit) and metal's tendency to depassivation) depend on the nature of ion-exchange groups, the degree of their acid dissociation and ion-chemical interaction with activator ions.
About the Authors
M. A. PetruninRussian Federation
Leninsky prosp. 31 bldg. 4, 119071 Moscow
L. B. Maksayeva
Russian Federation
Leninsky prosp. 31 bldg. 4, 119071 Moscow
T. A. Yurasova
Russian Federation
Leninsky prosp. 31 bldg. 4, 119071 Moscow
References
1. И.А. Старостина и О.В. Стоянов, Кислотно-основные взаимодействия и адгезия в металл-полимерных системах, Издательство Казанского государственного технологического университета, Казань, 2010, 200.
2. V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York, 1978, 279.
3. F.M. Fowkes, Role of acid-base interfacial bonding in adhesion, J. Adhesion Sci. Tech., 1987, 1, 7–27. doi: 10.1163/156856187X00049
4. G. Wypych, Handbook of Adhesion Promoters, ChemTech Publishing, Toronto, 2018, 138.
5. Б.В. Дерягин и Н.А. Кротова, Адгезия. Исследования в области прилипания и клеющего действия, Издательство Академии наук СССР, М. – Л., 1949, 246.
6. В.V. Deryagin, N.A. Krotova and V.P. Smilga, Adhesion of Solids, Springer, New York-London, 1978, 457.
7. Ю.П. Ваучский и Г.Т. Даровских, Адгезия полимеров. Учебное пособие к курсу “Химия и физика полимеров”, Изд. ЛТИ им. Ленсовета, Л.,1974, 104.
8. G. Gierenz and W. Karmann. Adhesives and Adhesive Tapes, Willey-VCH Verlag GmbH., Weinheim – New York – Chichester, 2001, 136.
9. R.S. Mulliken, Molecular complexes and their spectra. III. The interaction of electron donors and acceptors, J. Phys.Chem., 1952, 56, 801–822.
10. К.L. Johnson, К. Kendal and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A., 1971, 324, 301–313. doi: 10.1098/rspa.1971.0141
11. F.M. Fowkes and M. Mostafa, Acid – base interactions in polymer adsorption, Ind. Eng. Chem. Prod. Res. Dev., 1978, 17, 3–7. doi: 10.1021/I360065A002
12. D.G. Rance, Industrial adhesion problem, Orbital Press, Oxford, 1985, 198.
13. F.M. Fowkes, Attractive forces at interfaces, Ind. Eng. Chem., 1964, 56, 40–52. doi: 10.1021/IE50660A008
14. C.J. van Oss, R.J. Good and M.K Chaudhury, Additive and nonadditive surface tension components and the interpretation of contact angles, Langmuir, 1988, 4, 884–891. doi: 10.1021/LA00082A018
15. Э. Демлов и З. Демлов, Межфазный катализ, Мир, М., 1987, 466.
16. M. Zoppe and T. Loni, The representation of electrostatics for biological molecules. Computational electrostatics for biological applications. Geometric and numerical approaches to the description of electrostatic interaction between macromolecules, Springer International Publishing AG, Switzerland, 2015, 226. doi: 10.1007/978-3-319-12211-3_11
17. J. Bolger, Acid base interactions between oxide surfaces and polar organic compounds. Adhesion aspects of polymeric coatings, 2-nd Ed., Plenum Press, New York, 2011, 3. doi: 10.1007/978-1-4613-3658-7_1
18. Г. Кеше, Коррозия металлов. Физико-химические принципы и актуальные проблемы, Металлургия, М., 1984, 281.
19. Z. Szklarska-Smialowska, Pitting corrosion of metals, NACE, Houston TX, 1986, 377.
20. P.M. Natishan, E. McCafferty and W.E. O’Grady, Surface charge considerations in the pitting of ion-implanted aluminum, J. Electrochem. Soc., 1988, 135, 321–327. doi: 10.1149/1.2095608
21. A.P. Nazarov, M.A. Petrunin and Yu.N. Mikhallovskii, The role of ion exchange interactions in the passivation and localized corrosion of metals, Prot. Metals, 1992, 28, 432–441.
22. M.A. Petrunin, V.D. Gil’dengorn and A.P. Nazarov, Anionic aluminum activation in the presence of adsorbed ion exchangers, Prot. Metals, 1994, 30. 130–136.
23. E. McCafferty, The electrode kinetics of pit initiation on aluminum, Corros. Sci., 1995, 37, 481–492. doi: 10.1002/chin.199526012
24. M.A. Petrunin, А.P. Nazarov and Yu.N. Mikhailovski, Formation mechanism and anticorrosive properties of thin siloxane films on metal surfaces, J. Electrochem. Soc., 1996, 143, 251–257. doi: 10.1149/1.1836417
25. E. McCafferty, A surface charge model of corrosion pit initiation and of protection by surface alloying, J. Electrochem. Soc., 1999, 146, 2863-2869. https://doi.org/10.1149/1.1392021
26. E. McCafferty, Effect of ion implantation on the corrosion behavior of iron, stainless steels, and aluminum – A Review, Corros., 2001, 57, 1011–1029. doi: 10.5006/1.3281675
27. E. McCafferty, Sequence of steps in the pitting of aluminum by chloride ions, Corros. Sci., 2003, 45, 1421–1438. doi: 10.1016/S0010-938X(02)00231-7
28. P.M. Natishan and W.E. O’Grady, Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion – A Review, J. Electrochem. Soc., 2014, 161, 421–432. doi: 10.1149/2.1011409JES
29. E. McCafferty, Surface chemistry of aqueous corrosion processes, Springer, Cham – Heidelberg – New York – Dordrecht – London, 2015, 56. doi: 10.1007/978-3-319-15648-4
30. A.H. Heuer, H. Kahn, F. Ernst, G.M. Michal, D.B. Hovis, R.J. Rayne, F.J. Martin and P.M. Natishan, Enhanced corrosion resistance of interstitially hardened stainless steel: Implications of a critical passive layer thickness for breakdown, Acta Mater., 2012, 60, 716–725. doi: 10.1016/j.actamat.2011.10.004
31. W.E. O'Grady, D.F. Roeper and P.M. Natishan, Structure of chlorine К-Edge XANES spectra during the breakdown of passive oxide films on aluminum, J. Phys. Chem., 2011, 115, 25298–25303. doi: 10.1021/ip2056305
32. Е. McCafferty, Introduction to corrosion science, Springer Science+Business Media, New York – Dordrecht – Heidelberg – London, 2010, 314. doi: 10.1007/978-1-4419-0455-3
33. E. McCafferty and J. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal, 1998, 26, 549–564. doi: 10.1002/(SICI)1096-9918(199807)26:83.0.CO;2-Q
34. W. Stumm, Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems, Wiley Interscience, New York, 1992, 115. 10.5860/choice.30-3839
35. G.N. Lewis, Acids and bases, J. Franklin Inst., 1938, 226, 313. doi: 10.1016/S0016-0032(38)91691-6
36. K. Aramaki, Action of metallic corrosion inhibitors and the hard and soft acids and bases principles, Zairyo-to-Kankyo, 1996, 45, 674–681. doi: 10.3323/jcorr.56.243
37. T. Yamanaka and K. Tanabe, A representative parameter, HO,max, of acid-base strength on solid metal-oxygen compounds, J. Phys. Chem., 1976, 80, 1723–1727. doi: 10.1021/J100556A015
38. M. Kaltchev and W.T. Tysoe, An infrared spectroscopic investigation of thin alumina films: measurement of acid sites and surface reactivity, Surf. Sci., 1999, 430, 29–36. doi: 10.1016/S0039-6028(99)00376-3
39. H. Ma, Y. Berthier and P. Marcus, NH3 probing of the surface acidity of passive films on chromium, Corros. Sci., 2002, 44, 171–178. doi: 10.1016/S0010-938X(0l)00020-8.
40. L.K. Chau and M.D. Porter, Surface isoelectric point of evaporated silver films: determination by contact angle titration, J. Colloid Interface Sci., 1991, 145, 283– 286. doi: 10.1016/0021-9797(91)90121-N
41. E. McCafferty and J.P. Wightman, Determination of the surface isoelectric point of oxide films on metals by contact angle titration, J. Colloid Interface Sci., 1997, 194, 344–355. doi: 10.1006/jcis.1997.5138.
42. J.-F. Kuo and T.F. Yen, Some aspects in predicting the point of zero charge of a composite oxide system, J. Colloid Interface Sci., 1981, 21, 220–225. doi: 10.1016/0021-9797(88)90426-2.
43. J.R. Galvele, Taffel’s law in pitting corrosion and crevice corrosion susceptibility, Corros. Sci., 2005, 47, 3053–3067. doi: 10.1016/j.corsci.2005.05.043
44. J.H. de Boer, The dynamical character of adsorption, Clarendon Press, 1953, 239.
45. A. Kolics, A.S. Besing, P. Baradlai, R. Haasch and A. Weickowski, Effect of pH on thickness and ion content of the oxide film on aluminum in NaCl media, J. Electrochem. Soc., 2001, 148, 251–259. doi: 10.1149/1.1376118
46. М. Kosmulski, Standard enthalpies of ion adsorption onto oxides from aqueous solutions and mixed solvents, Colloids Surf. A, 1994, 28, 237–243. doi: 10.1016/0927-7757(93)02658-2
47. E. McCafferty, Pit initiation on aluminum as a queueing process, J. Electrochem. Soc., 2010, 157, 382–387. doi: 10.1149/1.3482021
48. Y. Muroya, G. Okamoto, T. Shibata and N. Sato, Corrosion of low alloy steels in neutral solution, Corros. Eng. Digest., 1969, 18, 452–458. doi: 10.3323/jcorrl954.18.10_452
49. E. McCafferty, Lewis acid/Lewis base effects in corrosion and polymer adhesion at aluminum surfaces, J. Electrochem. Soc., 2003, 150, 342–347. doi: 10.1149/1.1580135
50. E. Thomas, J.X. Bottero and J.M. Cases, An experimental study of the adsorption mechanisms of aqueous organic acids on porous aluminas. 2. Electrochemical modelling of salicylate adsorption, Colloids Surf., 1989, 37, 281–294. doi: 10.1016/0166-6622(89)80125-8.
51. O.J. Murphy, J.O’M. Bockris, T.E. Pou, D.L. Cocke and G. Sparrow, SIMS Evidence Concerning Water in Passive Layers, J. Electrochem. Soc., 1982, 129, 2149–2151. 10.1149/1.2124397.
52. L. Tomсsanyi, К. Varga, I. Baitik. G. Horanyi and E. Malеczki, Electrochemical study of the pitting corrosion of aluminium and its alloys – II. Study of the interaction of chloride ions with a passive film on aluminium and initiation of pitting corrosion, Electrochim. Acta, 1989, 34, 855–859. 10.1016/0013-4686(89)87119-1.
53. W.M. Carroll and C.B. Breslin, Stability of passive films formed on aluminium in aqueous halide solutions, Br. Corros. J., 2013, 26, 255–259. doi: 10.1179/000705991798269035
54. A.C. Zettlemoyer and E. McCafferty, Water on oxide surfaces, Croat. Chem. Acta, 1973, 45, 173–187.
55. H. Sadek, A.K. Helmy, V.M. Sabet and T.F. Tadros, Adsorption of potential-determining ions at the aluminium oxide-aqueous interface and the point of zero charge, J. Electroanal. Chem., 1970, 27, 257–266. doi: 10.1016/S0022-0728(70)80187-5
56. H. Bohni and H.H. Uhlig, Environmental factors affecting the critical pitting potential of aluminum, J. Electrochem. Soc., 1969,116, 906–910. doi: 10.1149/1.2412167
57. Z.A. Foroulis, Z.A. Foroulis and M.J. Thubrikar, A contribution to the study of the critical pitting potential of oxide covered aluminum in aqueous chloride solutions, Werkst. Korros., 1975, 26, 350–355. doi: 10.1002/MACO.19750260505
58. J.R. Galvele and S.M. DeMicheli, Mechanism of intergranular corrosion of Al-Cu alloys, Corros. Sci., 1970, 10, 95–807. doi: 10.1016/ S 0010-938X(70)80003-8
59. H. Kaesche, Untersuchungen iiber die gleichmassige Auflosung und den Lochfrass von Aluminiumelektroden, Z. Phys. Chem. Neue Folge, 1962, 34, 87–108. doi: 10.1524/zpch.1962.34.1_4.087
60. J.O’M Bockris and L.V. Minevski, On the mechanism of the passivity of aluminum and aluminum alloys, J. Electroanal. Chem., 1993, 349, 375–414. doi: 10.1016/0022-0728(93)80186-L.
61. C.B. Bargeron and R.B. Givens, Precursive blistering in the localized corrosion of aluminum, Corros., 1980, 36, 618–625. doi: 10.5006/0010-9312-36.ll.618.
62. S.Y. Yu, W.E. O’Grady, D.E. Ramaker and P.M. Natishan, Chloride ingress into aluminum prior to pitting corrosion an investigation by XANES and XPS, J. Electrochem. Soc., 2000, 147, 2952. doi: 10.1149/1.1393630
63. P. Roy and D.W. Fuerstenau, The effect of doping on the point of zero of charge of alumina, Surf. Sci., 1972, 30, 487–490. doi: 10.1016/0039-6028(72)90016.
64. S. Subrainanian, J.A Schwarz and Z. Hejase, The temperature dependence of the point of zero charge ofy-Al2O3, TiO2, and physical mixtures, J. Catal., 1989, 117, 512–518. doi: 10.1016/0021-9517(89)90360-6
65. J.A. Schwarz, C.T. Driscoll and A.K. Bhanot, The zero point of charge of silica-alumina oxide suspensions, Colloid Interface Sci., 1984, 97, 55–61. doi: 10.1016/0021-9797(84)90274-l.
66. R. Viganoo, J. Taraszewska, A. Dahetti and S. Trasatti, The point of zero charge of RuO2 + IrO2 mixed oxides, J. Electroanal. Chem. Interfac. Electrochem., 1985, 182, 203–209. doi: 10.1016/0368-1874(85)85455-l.
67. R. Sprycha, Determination of electrical charge at Zn2SiO4/solution interface, Colloids Surf., 1982, 5, 147–157. doi: 10.1016/0166-6622(82)80070-X
68. B.C. Bunker, G.C. Nelson, K.R Zavadil, J.C Barbour, F.D. Wall, J.P. Sullivan, C.F. Windisch, M.H. Engelhardt and D.R Baer, Hydration of passive oxide films on aluminum, J. Phys. Chem., 2002, 106, 4705–4713. doi: 10.1021/jp013246e
69. М.А. Петрунин, В.Д. Гильденгорн, Т.А. Юрасова, Г.В. Кудрявцев и А.П. Назаров, Влияние поверхностного заряда на коррозионную устойчивость алюминия и магния в хлоридсодсодержащих электролитах, Журнал физическорй химии, 1992, 66, 2493–2502.
70. D. Aldcroft, G.C. Bye and C.A. Hughes, Crystallisation processes in aluminium hydroxide gels. IV. Factors influencing the formation of the crystalline trihydroxides, J. Appl. Chem., 1969, 19, 167–172. doi: 10.1002/jctb.5010190603
71. F.J. Boerio and R.G. Dillingham, Hydrothermal stability of titanium-epoxy adhesive joints. Adhesive Joints., K.L. Mittal Ed., Plenum Press, N.Y., 1984, 541–553. doi: 10.1007/978-1-4613-2749-3_32
72. D.W. Fuerstenau and Pradip, Zeta potentials in the flotation of oxide and silicate minerals, Advan. Colloid Interface Sci., 2005, 114–115, 9–26. doi: 10.1016/j.cis.2004.08.006.
73. R.T. Foley, Localized corrosion of aluminum alloys – A Review, Corros., 1986, 42, 277–288. doi: 10.5006/l.3584905
74. T.P. Hoar, The production and breakdown of the passivity of metals, Corros. Sci., 1967, 7, 341–355. doi: 10.1016/S0010-938X(67)80023-4
75. J.R. Galvele, Taffel’s law in pitting corrosion and crevice corrosion susceptibility, Corros. Sci., 2005, 47, 3053–3067. doi: 10.1016/j.corsci.2005.05.043
76. T. Okada, The rate of passive metal dissolution in relation to the presence of transitional halide complexes in halide solutions, Corros. Sci., 1986, 26, 839–849. doi: 10.1016/0010-938Х(86)90067-3
77. A.A. Adams, Foley Scrape Potential Measurements on Aluminum Alloys, Corros., 1975, 31, 84–90. doi: 10.5006/0010-9312-31.3.84
78. R.N. Nishimura and K. Kudo, Pitting Corrosion of AISI 304 and 316 austenitic stainless steels covered with anodic oxide films, Corros., 1988, 44, 29–35. doi: 10.5006/l.3582021
79. C.R. Clayton and Y.C. Lu, A bipolar model of the passivity of stainless steel: The role of Mo addition, J. Electrochem. Soc., 1986, 133, 2465. doi: 10.1149/1.2108451
80. C.R. Clayton and Y.С. Lu, On the Role of Cr in the passivity of stainless steel, J. Electrochem. Sci., 1986, 133, 2465. doi: 10.1149/1.2108451
81. S. Virtanen and H. Bohni, Passivity, breakdown and repassivation of glassy FeCrP alloys, Corrosion Sci., 1990, 31, 333–342. doi: 10.1016/0010-938X(90)90128-R
82. E. Lederer and M. Lederer, Chromatography. A review of principles and applications, 1953, Elsevier Pub., Amsterdam – New York, 711. doi: 10.1016/S0003-2670(00)87756-9
83. M.J. Fuller, Inorganic ion-exchange chromatography on oxides and hydrous oxides, Chromatographic. Rev., 1971, 14, 45–76. doi: 10.1016/0009-5907(71)80011-Х
84. A.P. Nazarov, A.P. Lisovskii and Y.N. Mikhailovskii, Anodic dissolution of aluminum in the presence of halide ions, Protect. Met., 1991, 27, 10–15.
85. M.A. Petrunin, N.A. Gladkikh, M.A. Maleeva, L.B. Maksaeva and T.А. Yurasova, The use of organosilanes to inhibit metal corrosion. A review, Int. J. Corros. Scale Inhib., 2019, 8, 882–907. doi: 10.17675/2305-6894-2019-8-4-6
86. Г.В. Кудрявцев, С.З. Бернадюк и Г.В. Лисичкин, Ионообменники на основе модифицированных минеральных носителей, Успехи химии, 1989, 58, 684– 709. doi: 10.1070/RC1989v058n04ABEH003449
87. N. Sato, Whitney Award lecture. Toward a more fundamental understanding of corrosion processes, Corros., 1989, 45, 354–368. doi: 10.5006/l.3582030
88. М.А. Петрунин, В.Д. Гильденгорн, Т.А. Юрасова, Г.В. Кудрявцев, А.П. Назаров и Г.В. Лисичкин, Влияние поверхностного заряда на коррозионную устойчивость алюминия и магния в хлоридсодержащих электролитах, Журнал физической химии, 1992, 66, 2493–2502.
89. C.-P. Huang and W. Stumm, Specific adsorption of cations on hydrous -AI2O3, J. Colloid Interface Sci., 1973, 43, 409–420. doi: 10.1016/0021-9797(73)90387-l
90. M. Baumgärtner and H. Kaesche, Aluminum pitting in chloride solutions: morphology and pit growth kinetics, Corros. Sci., 1990, 31, 231–236. doi: 10.1016/0010-938X(90)90112-I
Review
For citations:
Petrunin M.A., Maksayeva L.B., Yurasova T.A. The role of acid-base interactions in metal corrosion. Review. Title in english. 2024;(3):1-43. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-1-43