Enhancing the corrosion resistance of oxide-ceramic composites by the cyclic anodic polarization technique
https://doi.org/10.61852/2949-3412-2024-2-3-82-94
Abstract
The effect of cyclic electrochemical polarization on the corrosion properties of oxide-ceramic coatings consisting of transition metal oxides, boron carbide, and boron nitride was studied. The coatings were applied by laser melting of powder mixtures on the surface of low-carbon unalloyed steel using a fiber-optic laser. The resulting coatings feature enhanced tribological properties. The composition, surface condition, and resistance of samples to electrochemical corrosion were studied. Voltammetric curves were recorded in a neutral buffer solution. It was shown that the presence of boron nitride in the coating composition leads to depassivation of the steel surface. The conceptual possibility of enhancing the corrosion resistance of samples coated with B4C-BN-Bi2O3-MnO2 by cyclic polarization was shown.
About the Authors
S. M. ReshetnikovRussian Federation
Universitetskaya str., 1, 426034 Izhevsk
Barmazina str., 34, 426067 Izhevsk
A. V. Tyukalov
Russian Federation
Universitetskaya str., 1, 426034 Izhevsk
F. Z. Gil’mutdinov
Russian Federation
Barmazina str., 34, 426067 Izhevsk
E. V. Kharanzhevskii
Russian Federation
Universitetskaya str., 1, 426034 Izhevsk
A. R. Gazizyanova
Russian Federation
Universitetskaya str., 1, 426034 Izhevsk
A. S. Shirobokova
Russian Federation
Universitetskaya str., 1, 426034 Izhevsk
A. I. Chukavin
Russian Federation
Barmazina str., 34, 426067 Izhevsk
References
1. S.M. Reshetnikov, E.V. Kharanzhevskii and M.D. Krivilev, Corrosion-electrochemical behavior of composite layers produced by laser sintering of nanoscale iron-nickel powders, Prot Met Phys Chem. Surf., 2012, 48, 729–734. doi: 10.1134/S207020511207012X
2. И.О. Башкова, С.М. Решетников, Ф.З. Гильмутдинов, Е.В. Харанжевский, Физико-химические свойства наноразмерных оксидных покрытий, получаемых на сплаве циркония высокоскоростным лазерным синтезом, Химическая физика и мезоскопия, 20, № 1, 85–95.
3. D.B. Miracle, Metal matrix composites–from science to technological significance //Compos. Sci. Technol., 2005 65 no. 15–16, 2526–2540. doi: 10.1016/j.compscitech.2005.05.027
4. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov and F.Z. Gil’mutdinov, Towards eliminating friction and wear in plain bearings operating without lubrication, Sci. Rep., 2023, 13, 17362. doi: 10.1038/s41598-023-44702-6
5. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov, F.Z. Gil'mutdinov, N.N. Soboleva and M.D. Krivilyov, Effect of oxygen in surface layers formed during sliding wear of Ni–ZrO2 coatings, Surf. Coat. Technol., 2022, 434, 128174. doi: 10.1016/j.surfcoat.2022.128174
6. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov, F.Z. Gil’mutdinov, N.N. Soboleva and M.D. Krivilyov, Tribological performance of boron-based superhard coatings sliding against different materials, Wear, 2021, 477, 203835. doi: 10.1016/j.wear.2021.203835
7. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov, F.Z. Gil’mutdinov, N.N. Soboleva and M.D. Krivilyov, Ultralow friction behaviour of B4C-BN-MeO composite ceramic coatings deposited on steel, J. Surf. and Coat. Technol., 2020, 390, 125664. doi: 10.1016/j.surfcoat.2020.125664
8. A.G. Ipatov, E.V. Kharanzhevskiy, S.N. Shmykov and K.G. Volkov, Tribotechnical Properties of Ceramic Antifriction Coatings Based on Iron Oxide and Boron Oxide, J. Frict. Wear, 2023, 44, no. 5, 286–290. doi: 10.3103/S1068366623050045
9. V.A. Katkar, G. Gunasekaran, A.G. Rao and P.M. Koli, Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater, Corros. Sci., 2011, 53, no. 9, 2700–2712. doi: 10.1016/j.corsci.2011.04.023
10. Ya.M. Kolotyrkin and V.M. Knyazheva, Properties of carbide phases and corrosion resistance of stainless steels, Itogi Nauki i Tekh., Ser.: Elektrokhimiya, Moscow, VINITI, 1974, 3, 5–83 (in Russian).
11. P. Linhardt, Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms, Mater. Corros., 2010, 61, no. 12, 1034–1039. doi: 10.1002/maco.201005769
12. A.V. Efimov, E.V. Kharanzhevskiy, S.M. Reshetnikov, T.A. Pisarevа and M.G. Gotsuk, Effect of inhibitors on the electrochemical corrosion of heat-resistant ceramic coatings deposited on non-alloy steel, Int. J. Corros. Scale Inhib., 2021, 10, no. 2, 838–850. doi: 10.17675/2305-6894-2021-10-2-22
13. E.V. Kharanzhevskiy, S.M. Reshetnikov, A.V. Efimov, F.Z. Gil’mutdinov and M.D. Krivilev, Application of some inhibitors for improving the corrosion resistance of ceramic coatings deposited on non-alloy steel by short-pulse laser treatment, Int. J. Corros. Scale Inhib., 2020, 9, no. 1, 44–55. doi: 10.17675/2305-6894-2020-9-1-3
14. S.M. Reshetnikov, A.V. Tyukalov and E.V. Kharanzhevskiy, Effect of octanoic acid-based inhibitors on the corrosion and electrochemical properties of oxide-ceramic coatings B4C–BN–Bi2O3–MnO2 on unalloyed steel, Int. J. Corros. Scale Inhib., 2024, 13, no. 1, 357–366. doi: 10.17675/2305-6894-2024-13-1-18
15. E.V. Kharanzhevskiy, S.M. Reshetnikov and A.V. Tyukalov, Effect of inhibitors on the corrosion and electrochemical properties of B4C–FeO oxide-ceramic coatings on steel, Int. J. Corros. Scale Inhib., 2023, 12, no. 2, 771–782. doi: 10.17675/2305-6894-2023-12-2-21
16. M.D. Krivilev, E.V. Kharanzhevskii, V.G. Lebedev, D.A. Danilov, E.V. Danilova and P.K. Galenko, Synthesis of Composite Coatings using Rapid Laser Sintering of Metallic Powder Mixtures, Phys. Met. Metallogr., 2013, 114, no. 10, 799–820. doi: 10.1134/S0031918X13080073
Review
For citations:
Reshetnikov S.M., Tyukalov A.V., Gil’mutdinov F.Z., Kharanzhevskii E.V., Gazizyanova A.R., Shirobokova A.S., Chukavin A.I. Enhancing the corrosion resistance of oxide-ceramic composites by the cyclic anodic polarization technique. Title in english. 2024;(3):82-94. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-82-94