Preview

Title in english

Advanced search

The effect of cyclic potential pulse on corrosion and hydrogenation of carbon steel in chloride solutions with a pH close to neutral

https://doi.org/10.61852/2949-3412-2024-2-3-111-130

Abstract

At more negative Еc values, an increase in the duration of cathodic polarization reduces the intensity of steel local corrosion in the unbuffered chloride solution. This effect is explained by blocking of the pit nucleation centers on the metal surface by a layer of steel dissolution products formed in the near-electrode electrolyte layer with a high pH. Significant fluctuations in the cathodic protection potential under the influence of stray currents lead to the formation of local types of corrosion of steel structures operating in soils and seawater. The potential fluctuations induced by both alternating and direct current sources can be modeled by cycling a square potential stage. In this paper, the effect of cyclic potential pulse (CIP) on the general and local corrosion of low-carbon steel in 3.5% NaCl solution with borate buffer (pH 6.7) and without it is studied. A decrease in the cathodic half-period potential (Ec) of the CIP inhibits general corrosion and accelerates local corrosion of steel in both solutions, which is associated with an increase in the amount of hydrogen in the metal. An increase in the duration of the cathodic half-period of the CIP increases the density and total area of the pitting at less negative values of the Ec. At more negative Еc values, an increase in the duration of cathodic polarization reduces the intensity of local.

About the Authors

A. A. Rybkina
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

 Leninsky pr. 31, 119071 Moscow



K. V. Mizitov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

 Leninsky pr. 31, 119071 Moscow



A. I. Marshakov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

 Leninsky pr. 31, 119071 Moscow



References

1. AC Corrosion State-of-the-Art: Corrosion Rate, Mechanism and Mitigation Requirements, NACE 2010, TG-35110. https://standards.globalspec.com/std/1243051/NACE%2035110

2. D. Kuang and Y.F. Cheng, Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions, Corros. Sci., 2014, 85, 304–310. doi: 10.1016/j.corsci.2014.04.030

3. А.И. Маршаков, Т.А. Ненашева и В.Э. Касаткин, Влияние переменного тока на скорость растворения углеродистой стали в хлоридном электролите. II. Катодные потенциалы, Коррозия: материалы, защита, 2017, 10, 1–17.

4. J. Xu, Y.L. Bai, T.Q. Wu, M. Yan, Ch. Yu and Ch. Sun, Effect of elastic stress and alternating current on corrosion of X80 pipeline steel in simulated soil solution, Eng. Failure Anal., 2019, 100, 192–205. doi: 10.1016/j.engfailanal.2019.02.059

5. H.V. Shubina, A. Nazarov, F. Vucko, N. Larche and D. Thierry, Effect of Cathodic Polarisation Switch-Off on the Passivity and Stability to Crevice Corrosion of AISI 304L Stainless Steel, Materials, 2021, 14, 2921. doi: 10.3390/ma14112921

6. H. Wan, D. Song, Z. Liu, C. Du, Z. Zeng, X. Yang and X. Li, Effect of alternating current on stress corrosion cracking behavior and mechanism of X80 pipeline steel in near-neutral solution, J. Nat. Gas Sci. Eng., 2017, 38, 458–465. doi: 10.1016/j.jngse.2017.01.008

7. W. Wu, Y. Pan, Z. Liu and C. Du, Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in Simulated Seawater in Presence of Different Alternating Current Densities, Materials, 2018, 11, 1074. doi: 10.3390/ma11071074

8. H. Wan, D. Song, Y. Cai and C. Du, The AC corrosion and SCC mechanism of X80 pipeline steel in near-neutral pH solution, Eng. Failure Anal., 2020, 118, 104904. doi: 10.1016/j.engfailanal.2020.104904

9. T.A. Nenasheva, A.I. Marshakov and V.E. Ignatenko, The Influence of Alternating Current on Stress Corrosion Cracking of Grade X70 Pipe Steel, Prot. Met. Phys. Chem. Surf., 2020, 56, 1223–1231. doi: 10.1134/S2070205120070126

10. Z. Li, B. Sun, Q. Liu, Y. Yu and Z. Liu, Fundamentally understanding the effect of Non-stable cathodic potential on stress corrosion cracking of pipeline steel in Near-neutral pH solution, Constr. Build. Mater., 2021, 288, 123117. doi: 10.1016/j.conbuildmat.2021.123117

11. Corrosion of Metals and Alloys. Determination of AC Corrosion. Protection Criteria. ISO 18086. International Organization for Standardization: Geneva, Switzerland, 2019. https://www.iso.org/standard/78148.html

12. A.W. Peabody, Peabody’s Control of Pipeline Corrosion 2nd ed. NACE International the Corrosion Society: Houston, TX, USA, 2001, 226–231. https://www.cabdirect.org/cabdirect/abstract/20013090552

13. W. Baeckmann and W. Schwenk, Handbuch des kathodischen Korrosionsschutzes. In Theorie und Praxis der Elektrochemischen Schutzverfahren, Verlag Chemie, Weinheim, Germany 1980, 15–61. https://scholar.google.com/scholar_lookup?title=Handbuch+des+kathodischen+Korrosionsschutzes&author=Baeckmann,+W.&author=Schwenk,+W.&publication_year=1980&pages=15–61

14. Y. Huo, M.Y. Tan and M. Forsyth, Visualizing dynamic passivation and localized corrosion processes occurring on buried steel surfaces under the effect of anodic transients, Electrochem. Commun., 2016, 66, 21–24. doi: 10.1016/j.elecom.2016.02.015

15. Y. Huo and M.Y. Tan, Measuring and understanding the critical duration and amplitude of anodic transients, Corros. Eng. Sci. Technol., 2017, 52, 65–72. doi: 10.1080/1478422X.2017.1386017

16. Y. Huo and M.Y. Tan, Localized corrosion of cathodically protected pipeline steel under the effects of cyclic potential transients. Corros. Eng. Sci. Technol., 2018, 53, 348–354. doi: 10.1080/1478422X.2018.1471250

17. R.K. Gupta, M.Y. Tan, J.S. Esquivel and M. Forsyth, Occurrence of anodic current and corrosion of steel in aqueous media under fluctuating cathodic protection potentials, Corrosion, 2016, 72, 1243–1251. doi:10.5006/1637

18. Z.Y. Liu, X.G. Li, C.W. Du and Y.F. Cheng, Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution, Corros. Sci., 2009, 51, 2863–2871. doi: 10.1016/j.corsci.2009.08.019

19. Z.Y. Liu, X.G. Li and Y.F. Cheng, Electrochemical state conversion model for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution, Electrochim. Acta, 2011, 56, 4167–4175, doi: 10.1016/j.electacta.2011.01.100

20. Z.Y. Liu, X.G. Li and Y.F. Cheng, Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization, Electrochim. Acta, 2012, 60, 259– 263. doi: 10.1016/j.electacta.2011.11.051

21. L. Zhiyong, C. Zhongyu, L. Xiaogang, Du Cuiwei and X. Yunying, Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization, Electrochem. Commun., 2014, 48, 127–129. Doi 10.1016/j.elecom.2014.08.016

22. M. Dai, J. Liu, F. Huang and Y. Zhang, Effect of cathodic protection potential fluctuations on pitting corrosion of X100 pipeline steel in acidic soil environment, Corros. Sci., 2018, 143, 428–437. doi:10.1016/j.corsci.2018.08.040

23. M. Dai, J. Liu, F. Huang, Q. Hu, Y. Frank Cheng and C. Cao, Derivation of the mechanistic relationship of pit initiation on pipelines resulting from cathodic protection potential fluctuation, Corros. Sci., 2020, 163, 108226. Doi: 10.1016/j.corsci.2019.108226

24. A. Rybkina, N. Gladkikh, A. Marshakov, M. Petrunin and A. Nazarov, Effect of Sign Alternating Cyclic Polarisation and Hydrogen Uptake on the Localised Corrosion of X70 Pipeline Steel in Near Neutral Solutions, Metals, 2020, 10, 245. doi: 10.3390/met10020245

25. A.I. Marshakov and T.A. Nenasheva, The formation of corrosion defects upon cathodic polarization of X70 grade pipe steel, Prot. Met. Phys. Chem. Surf., 2015, 51, 1122– 1132. doi: 10.1134/S2070205115070126

26. A.I. Marshakov and A.A. Rybkina, Dissolution of iron and ionization of hydrogen in borate buffer under cyclic pulse polarization, Int. J. Electrochem. Sci., 2019, 14, 9468– 9481. doi: 10.20964/2019.10.04

27. А.И. Маршаков, А.А. Рыбкина, М.А. Малеева и А.А. Рыбкин, Влияние атомарного водорода на кинетику пассивации железа в нейтральных растворах, Физикохимия поверхности и защита материалов, 2014, 50, no. 3, 297–304.

28. А.И. Маршаков, А.А. Рыбкина, Л.Б. Максаева, M.A. Петрунин и А.П. Назаров, Изучение начальных стадий пассивации железа в нейтральных растворах методом кварцевого резонатора, Физикохимия поверхности и защита материалов, 2016, 52, no. 2, 543–553.

29. Т.А. Ненашева и А.И. Маршаков, Кинетика растворения наводороженной углеродистой стали в электролитах с рН близким к нейтральному, Физикохимия поверхности и защита материалов, 2015, 51, no. 6, 664.

30. M.A.V. Devanathan and Z. Stahurski, The adsorption and diffusion of electrolytic hydrogen in palladium, Proc. Math. Phys. Eng. Sci., 1962, 270, 90–102. doi: 10.1098/rspa.1962.0205

31. Y.G. Avdeev, T.A. Nenasheva, A.Y. Luchkin and A.I. Marshakov, Effect of Quaternary Ammonium Salts and 1,2,4-Triazole Derivatives on Hydrogen Absorption by Mild Steel in Hydrochloric Acid Solution, Materials, 2022, 15, 6989. doi: 10.3390/ma15196989

32. А.И. Маршаков, А.А. Рыбкина и Я.Б. Скуратник, Влияние абсорбированного водорода на растворение железа, Электрохимия, 2000, 36, no. 10, 1245–1252.

33. A.A. Rybkina, M.A. Maleeva and A.I. Marshakov, The effect of hydrogen sorbed by iron on anodic dissolution of metal in sulfate electrolytes, Prot. Met. Phys. Chem. Surf., 2013, 49, 805–810. doi: 10.1134/S2070205113070149

34. M.A.V. Devanathan and Z. Stachurski, The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates, J. Electrochem. Soc., 1964, 3, 619–623. doi: 10.1149/1.2426195

35. J.O’M. Bockris, J. McBreen and L. Nanis, The hydrogen evolution kinetics and hydrogen entry into -Iron, J. Electrochem. Soc., 1965, 112, 1025–1031.

36. S.P. Harrington, F. Wang and T.M. Devine, The structure and electronic properties of passive and prepassive films of iron in borate buffer, Electrochim. Acta, 2010, 55, 4092–4102. doi: 10.1016/j.electacta.2009.11.012

37. H. Wroblova, V. Brusic and J.O’M. Bockris, Ellipsometric investigations of anodic film growth on iron in neutral solution. Prepassivefilm, J. Phys. Chem., 1971, 75, 2823–2829. doi: 10.1021/j100687a019

38. W.J. Lorenz, G. Staikov, W. Schindler and W. Wiesbeck, The Role of Low-Dimensional Systems in Electrochemical Phase Formation and Dissolution Processes, J. Electrochem. Soc., 2002, 149, K47. doi: 10.1149/1.1519853

39. А.И. Маршаков, Л.Б. Максаева и Ю.Н. Михайловский, Исследование разряда ионов H3O+ и проникновения водорода в железо при анодной поляризации, Защита металлов, 1993, 29, 857–868.

40. Y.F. Cheng, Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines, Electrochim. Acta, 2007, 52, 2661– 2667. doi: 10.1016/j.electacta.2006.09.024


Review

For citations:


Rybkina A.A., Mizitov K.V., Marshakov A.I. The effect of cyclic potential pulse on corrosion and hydrogenation of carbon steel in chloride solutions with a pH close to neutral. Title in english. 2024;(3):111-130. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-111-130

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.