Preview

Title in english

Advanced search

Corrosion of copper in acetic acid solutions

Abstract

Corrosion of copper in acetic acid solutions freely aerated by air was studied depending on its concentration and the duration of contact of the metal with an aggressive medium. There are no fundamental differences in the aggressiveness of this medium with respect to copper in the transition from static to dynamic experimental conditions. Aggressiveness of the studied media in relation to metallic copper increases the accumulation of the corrosion product in them, Cu(II) acetate. This effect is most pronounced when metallic copper comes into contact with a dynamic corrosive medium. A mixture of quaternary ammonium salts (catamine AB) and a triazole derivative (IFKhAN-92) were studied as copper corrosion inhibitors in acetic acid solutions. The highest protective effect is provided by the additive IFKhAN-92. The effectiveness of this inhibitor does not significantly depend on the duration of contact of the metal with the aggressive medium, the content of H3CCOOH in it, and the hydrodynamic characteristics of the solution. The IFKhAN-92 inhibitor retains its protective action against metallic copper even in the case of accumulation of a corrosion product, Cu(II) acetate, in a corrosive environment. It is important that this effect is preserved when moving from static to dynamic environments. The influence of the convective factor on the corrosion of copper in an acetic acid solution containing Cu(II) acetate, both in the absence and presence of corrosion inhibitors, is considered.

About the Authors

Ya. G. Avdeev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071, Moscow



K. L. Anfilov
Bauman Moscow State Technical University (Kaluga Branch)
Russian Federation

Bazhenov str. 2, 248000, Kaluga



Yu. I. Kuznetsov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninskii pr. 31, 119071, Moscow



References

1. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1261–1276. doi: 10.17675/2305-6894-2020-9-4-5

2. Я.Г. Авдеев, Высокотемпературная коррозия сталей в растворах кислот. Ч. 1. Методические особенности проведения исследований. Параметры коррозионного процесса. Обзор, Коррозия: материалы, защита, 2020, 4, 1–16. doi: 10.31044/1813-7016-2020-0-4-1-16

3. K. El Mouaden, D.S. Chauhan, M.A. Quraishi, L. Bazzi and M. Hilali, Cinnamaldehyde-modified chitosan as a bio-derived corrosion inhibitor for acid pickling of copper: Microwave synthesis, experimental and computational study, Int. J. Biol. Macromol., 2020, 164, 3709–3717. doi: 10.1016/j.ijbiomac.2020.08.137

4. D.K. Verma, E.E. Ebenso, M.A. Quraishi and C. Verma, Gravimetric, electrochemical surface and density functional theory study of acetohydroxamic and benzohydroxamic acids as corrosion inhibitors for copper in 1M HCl, Results Phys., 2019, 13, 102194. doi: 10.1016/j.rinp.2019.102194

5. M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari and B. Ebrahimi, Evaluating two new synthesized S–N Schiff bases on the corrosion of copper in 15% hydrochloric acid, Mater. Chem. Phys., 2008, 107, 153–157. doi: 10.1016/j.matchemphys.2007.06.068

6. R.K. Ahmed, S. Zhang. Bee pollen extract as an eco-friendly corrosion inhibitor for pure copper in hydrochloric acid, J. Mol. Liq., 2020, 316, 113849. doi: 10.1016/j.molliq.2020.113849

7. M.N. El-Haddad, Chitosan as a green inhibitor for copper corrosion in acidic medium, Int. J. Biol. Macromol., 2013, 55, 142–149. doi: 10.1016/j.ijbiomac.2012.12.044

8. L. Larabi, O. Benali, S.M. Mekelleche and Y. Harek, 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid, Appl. Surf. Sci., 2006, 253, 1371–1378. doi: 10.1016/j.apsusc.2006.02.013

9. El-S.M. Sherif, R.M. Erasmus and J.D. Comins, Inhibition of copper corrosion in acidic chloride pickling solutions by 5-(3-aminophenyl)-tetrazole as a corrosion inhibitor, Corros. Sci., 2008, 50, 3439–3445. doi: 10.1016/j.corsci.2008.10.002

10. D.-Q. Zhang, Q.-R. Cai, L.-X. Gao and K.Y. Lee, Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution, Corros. Sci., 2008, 50, 3615–3621. doi: 10.1016/j.corsci.2008.09.007

11. D.-Q. Zhang, H. Wu and L.-X. Gao, Synergistic inhibition effect of l-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution, Mater. Chem. Phys., 2012, 133, 981–986. doi: 10.1016/j.matchemphys.2012.02.001

12. L. Zhou, S. Zhang, B. Tan, L. Feng, B. Xiang, F. Chen, W. Li, B. Xiong and T. Song, Phenothiazine drugs as novel and eco-friendly corrosion inhibitors for copper in sulfuric acid solution, J. Taiwan Inst. Chem. Eng., 2020, 113, 253–263. doi: 10.1016/j.jtice.2020.08.018

13. I. Cakmakcı, B. Duran and G. Bereket, Influence of electrochemically prepared poly(pyrrole-co-N-methylpyrrole) and poly(pyrrole)/poly(N-methylpyrrole) composites on corrosion behavior of copper in acidic medium, Prog. Org. Coat., 2013, 76, 70–77. doi: 10.1016/j.porgcoat.2012.08.015

14. L. Guo, B. Tan, X. Zuo, W. Li, S. Leng and X. Zheng, Eco-friendly food spice 2-Furfurylthio-3-methylpyrazine as an excellent inhibitor for copper corrosion in sulfuric acid medium, J. Mol. Liq., 2020, 317, 113915. doi: 10.1016/j.molliq.2020.113915

15. G. Trabanelli, A. Frignani, C. Monticelli and F. Zucchi, Alkyl-benzotriazole derivatives as inhibitors of iron and copper corrosion, Int. J. Corros. Scale Inhib., 2015, 4, no. 1, 96–107. doi: 10.17675/2305-6894-2015-4-1-096-107

16. M.A. Amin, K.F. Khaled, Q. Mohsen and H.A. Arida, A study of the inhibition of iron corrosion in HCl solutions by some amino acids, Corros. Sci., 2010, 52, 1684–1695. doi: 10.1016/j.corsci.2010.01.019

17. Я.Г. Авдеев, Ю.И. Кузнецов и М.В. Тюрина, Об ингибировании коррозии низкоуглеродистой стали в горячих растворах органических кислот, Коррозия: материалы, защита, 2012, 3, 24–28.

18. K.M. Deen, N. Mehrjoo, and E. Asselin, Thermo–Kinetic diagrams: The Cu–H2O– Acetate and the Cu–H2O systems, J. Electroanal. Chem., 2021, 895, 115467. doi: 10.1016/j.jelechem.2021.115467

19. K.M. Deen and E. Asselin, Method of developing Thermo–Kinetic diagrams: The Cu– H2O–acetate and the Cu–H2O systems, MethodsX, 2021, 8, 101539. doi: 10.1016/j.mex.2021.101539

20. И.А. Молодов и В.В. Лосев, Закономерности образования низковалентных промежуточных частиц при стадийном электродном процессе разряда-ионизации металла, В сб. Электрохимия, 7, Под. ред. Ю.М. Полукарова, М.: ВИНИТИ, 1971, 65–113.

21. Я.Г. Авдеев и Т.Э. Андреева, Особенности механизма коррозии сталей в ингибированных растворах кислот, содержащих соли железа (III), Журнал физической химии, 2022, 96, № 2, 281–293. doi: 10.31857/S0044453722020030

22. Ю.В. Плесков и В.Ю. Филиновский, Вращающийся дисковый электрод, М: Наука, 1972, 344 с.

23. Я.Г. Авдеев и Ю.И. Кузнецов, Высокотемпературная коррозия сталей в растворах кислот. Ч. 3. Ингибиторная защита сталей азотсодержащими гетероциклическими органическими соединениями и неорганическими окислителями. Обзор, Коррозия: материалы, защита, 2021, 2, 1–23. doi: 10.31044/1813-7016-2021-0-2-1-23


Review

For citations:


Avdeev Ya.G., Anfilov K.L., Kuznetsov Yu.I. Corrosion of copper in acetic acid solutions. Title in english. 2023;(1):56-69. (In Russ.)

Views: 502


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.