Morphology and properties of cathodically modified and anodized titanium surface
https://doi.org/10.61852/2949-3412-2024-2-3-143-158
Abstract
The effect of titanium surface treatment on the formation of the oxide layer nanostructure was studied. This layer was formed by electrochemical oxidation in an acidic solution containing fluoride ions. The structures and properties of the oxides obtained on the titanium surface were studied by means of electrochemical impedance spectroscopy, cyclic voltammetry and atomic force microscopy. Preliminary formation of a hydride sublayer on the titanium surface does not allow for the formation of a regular nanotubular oxide structure.
About the Authors
I. V. KasatkinaRussian Federation
Leninsky pr. 31, 119071 Moscow
V. E. Kasatkin
Russian Federation
Leninsky pr. 31, 119071 Moscow
A. I. Shcherbakov
Russian Federation
Leninsky pr. 31, 119071 Moscow
I. G. Korosteleva
Russian Federation
Leninsky pr. 31, 119071 Moscow
L. P. Kornienko
Russian Federation
Leninsky pr. 31, 119071 Moscow
V. N. Dorofeeva
Russian Federation
Leninsky pr. 31, 119071 Moscow
References
1. N. Vach´e, Y. Cadoret, B. Dod and D. Monceau, Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys, Corros. Sci., 2021, 178, 109041. doi: 10.1016/j.corsci.2020.109041
2. L.-C. Zhang and L.-Y. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21, no. 4, 1801215. doi: 10.1002/adem.201801215
3. D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn and M.A. Easton, Additive manufacturing of ultrafine-grained high-strength titanium alloys, Nature, 2019, 576, no. 7785, 91–95. doi: 10.1038/s41586-019-1783-1
4. S. Bahl, S. Suwas and K. Chatterjee, Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials, Int. Mater. Rev., 2020, 66, no. 4, 1–26. doi: 10.1080/09506608.2020.1735829
5. D. Banerjee and J. Williams, Perspectives on titanium science and technology, Acta Mater., 2013, 61, no. 3, 844–879. doi: 10.1016/j.actamat.2012.10.043
6. B. Nagesha, V. Dhinakaran, M.V. Shree, K.M. Kumar and T. Jagadeesha, A review on weldability of additive manufactured titanium alloys, Mater. Today: Proc., 2020, 33, 2964–2969. doi: 10.1016/j.matpr.2020.02.899
7. S. Yan, G.-L. Song, Z. Li, H. Wang, D. Zheng, F. Cao, M. Horynova, M.S. Dargusch and L. Zhou, A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments, J. Mater. Sci. Technol., 2017, 34, no. 3, 421–435. doi: 10.1016/j.jmst.2017.11.021
8. R. Shi, Y. Gao, D. Li, W. Zhao and Y. Zheng, Recent Advances in the Design of Novel β-Titanium Alloys Using Integrated Theory, Computer Simulation, and Advanced Characterization, Adv. Eng. Mater., 2021, 23, no. 8, 2100152. doi: 10.1002/adem.202100152
9. H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent and M.S. Dargusch, Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development, J. Alloys Compd., 2020, 827, 154263. doi: 10.1016/j.jallcom.2020.154263
10. J. Xiang, H.T. Zhang, N.C. Ye, C.Z. Xu, Z. Wang, L. Liu, J.J. Ma and Z.W. Tong, Anodic TiO2 nanotubes supported palladium catalysts for Heck coupling reactions: excellent catalytic activity and reusability, Mol. Catal., 2023, 549, 113463. doi: 10.1016/j.mcat.2023.113463
11. J.W. Cao, Z.Q. Gao, C. Wang, H.M. Muzammal, W.Q. Wang, Q. Gu, C. Dong, H.T. Ma and Y.P. Wang, Morphology evolution of the anodized tin oxide film during early formation stages at relatively high constant potential, Surf. Coat. Technol., 2020, 388, 125592. doi: 10.1016/j.surfcoat.2020.125592
12. L. Liao, W.G. Huang, F.G. Cai and Q.Y. Zhang, Preparation and mechanism of honeycomb-like nanoporous SnO2 by anodization, J. Mater. Sci. Mater. Electron., 2021, 32, 9540–9550. doi: 10.1007/s10854-021-05617-y
13. Q.Y. Wang, H.L. Li, X.L. Yu, Y. Jia, Y. Chang and S.M. Gao, Morphology regulated Bi2WO6 nanoparticles on TiO2 nanotubes by solvothermal Sb3+ doping as effective photocatalysts for wastewater treatment, Electrochim. Acta, 2020, 330, no. 5, 135167. doi: 10.1016/j.electacta.2019.135167
14. C.Y. Li, K. Luo, B. Yan, W. Sun, L.F. Jiang, P.Z. Li, Y. Zhang, S. Wang, Y. Yu, X. Zhu and Y. Song, Simulation of anodic current and optimization of the fitting equation and the fitting algorithm during constant voltage anodization, J. Phys. Chem. C, 2023, 127, no. 20, 9707–9716. doi: 10.1021/acs.jpcc.3c01612
15. J. Wu, Y. Li, Z.X. Li, S. Li, L. Shen, X. Hu and Z.Y. Ling, Ultra-slow growth rate: accurate control of the thickness of porous anodic aluminum oxide films, Electrochem. Commun., 2019, 109, 106602. doi: 10.1016/j.elecom.2019.106602
16. S.X. Liu, J.L. Tian, S. Wu, W. Zhang and M.Y. Luo, A bioinspired broadband self-powered photodetector based on photo-pyroelectric-thermoelectric effect able to detect human radiation, Nano Energy, 2022, 93, 106812. doi: 10.1016/j.nanoen.2021.106812
17. R. Jin, X.D. Ye, J. Fan, D.C. Jiang and H.Y. Chen, In situ imaging of photocatalytic activity at titanium dioxide nanotubes using scanning ion conductance microscopy, Anal. Chem., 2019, 91, 2605–2609. doi: 10.1021/acs.analchem.8b05311
18. L. Bai, Y. Zhao, P. Chen, X.Y. Zhang, X.B. Huang, Z.B. Du, R. Crawford, X.H. Yao, B. Tang, R.Q. Hang and Y. Xiao, Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration, Small, 2021, 17, 2006287. doi: 10.1002/smll.202006287
19. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci., 2007, 11, 3–18. doi: 10.1016/j.cossms.2007.08.004
20. R. Beranek, H. Hildebrand and P. Schmuki, Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes, Electrochem. Solid-State Lett., 2003, 6, no. 3, B12–B14. doi: 10.1149/1.1545192
21. A. Ghicov, H. Tsuchiya, R. Hahn, J.M. MacAk, A.G. Muñoz and P. Schmuki, TiO2 nanotubes H+ insertion and strong electrochromic effect, Electrochem. Commun., 2006, 8, no. 4, 528–532. doi: 10.1016/j.elecom.2006.01.015
22. M.G. Hosseini, S.A.S. Sajjadi and M.M. Momeni, Electrodeposition of platinum metal on Ti and anodized Ti from P solt: application to electro-oxidation of glycerol, Surf. Eng., 2007, 23, no. 6, 419–424. doi: 10.1179/174329407X260582
23. J.M. Macak, H. Hildebrand, U. Marten-Jahns and P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes, J. Electroanal. Chem., 2008, 621, no. 2, 254–266. doi: 10.1016/j.jelechem.2008.01.005
24. B. Makurat-Kasprolewicz and A. Ossowska, Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Mater. Today Commun., 2023, 34, no. 2–3, 105425. doi: 10.1016/j.mtcomm.2023.105425
25. A.B. Tesler, M. Altomare and P. Schmuki, Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/o-H3PO4 Electrolytes in View of Light-Harvesting and Catalytic Applications, ACS Appl. Nano Mater., 2020, 3, no. 11, 10646–10658. doi: 10.1021/acsanm.0c01859
26. L. Tsui and G. Zangari, Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic and photovoltaic devices, Electrochim. Acta, 2014, 128, no. 10, 341–348. doi: 10.1016/j.electacta.2013.09.150
27. W. Zhang, Y. Tian, H. He, L. Xu, W. Li and D. Zhao, Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications, Natl. Sci. Rev., 2020, 7, no, 11, 1702–1725. doi: 10.1093/nsr/nwaa021
28. T. Bautkinova, N. Utsch, T. Bystron, M. Lhotka, M. Kohoutkova, M. Shviro and K. Bouzek, Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane, J. Power Sources, 2023, 565, no. 12, 232913. doi: 10.1016/j.jpowsour.2023.232913
29. Sh. Luo, F. Su, Ch. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu and Q. Cai, A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor, Talanta, 2011, 86, 157–163. doi: 10.1016/j.talanta.2011.08.051
30. J. Wang, G. Ji, Y. Liu, M.A. Gondal and X. hang, Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol, Catal. Commun., 2014, 46, 17–21. doi: 10.1016/j.catcom.2013.11.011
31. A.I. Shcherbakov, I.V. Kasatkina, V.V. Vysotskii, A.A. Averin, V.A. Kotenev and A.Yu. Tsivadze, Formation of nanocomposites of platinum with nanotubular titanium dioxide, Prot. Met. Phys. Chem. Surf., 2014, 50, no. 6, 803–808. doi: 10.1134/S2070205114060203
32. H. Cao, Zh. Fan, G. Hou, Y. Tang and G. Zheng, Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol, Electrochim. Acta, 2014, 125, 275–281. doi: 10.1016/j.electacta.2014.01.101
33. Н.Д. Томашов, В.Н. Модестова и А.С. Анатольева, Влияние плотности тока на наводороживание и коррозию титановых сплавов, Коррозия металлов и сплавов: сборник статей, М.: Металлургиздат, 1963–1965, 80–102.
34. Н.Д. Томашов, В.Н. Модестова, Л.А. Плавич и А.Б. Авербух, Исследование электрохимического поведения титана, Коррозия металлов и сплавов: сборник статей, М.: Металлургиздат, 1963–1965, 176–182.
35. И.В. Касаткина и А.И. Щербаков, Электрохимические свойства нано трубчатого и компактного оксидов титана, Коррозия: материалы, защита, 2014, 7, 11–13.
36. О.В. Лозовая, М.Р. Тарасевич, В.А. Богдановская, И.В. Касаткина и А.И. Щербаков, Электрохимический синтез, исследование и модифицирование нанотрубок TiO2, Физикохимия поверхности и защита материалов, 2011, 47, 45–50.
37. I.V. Kasatkina, A.I. Shcherbakov, V.V. Vysotskii, V.N. Dorofeeva, R.X. Zalavutdinov and V.A. Kotenev, The effect of titanium support on the mophological properties of growth of titanium-oxide nanotubes and platinum deposit, Prot. Met. Phys. Chem. Surf., 2017, 53, no. 5, 841–846. doi: 10.1134/S2070205117050070
38. И.В. Касаткина, А.И. Щербаков и В.И. Золотаревский, Формирование нанотрубчатых оксидов на титане, Коррозия: материалы и защита, 2013, 6, 1–6.
39. Sh. Zhang, M. Yu, L. Xu, S. Zhao, J. Che and X. Zhu, Formation mechanism of multilayer TiO2 nanotubes in HBF4 electrolyte, RSC Adv., 2017, 7, 33526–33531. doi: 10.1039/C7RA05624A
40. O. Lebedeva, D. Kultin, I. Kudryavtsev, N. Root and L. Kustov, The role of initial hexagonal self-ordering in anodic nanotube growth in ionic liquid, Electrochem. Commun., 2017, 75, 78–81. doi: 10.1016/j.elecom.2017.01.005
Review
For citations:
Kasatkina I.V., Kasatkin V.E., Shcherbakov A.I., Korosteleva I.G., Kornienko L.P., Dorofeeva V.N. Morphology and properties of cathodically modified and anodized titanium surface. Title in english. 2024;(3):143-158. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-143-158