Preview

Title in english

Advanced search

Application of polymerizable and alkoxide gels for formation of conversion coatings on metals

https://doi.org/10.61852/2949-3412-2024-2-3-159-173

Abstract

The application of polymerizable and alkoxide gels for the formation of porous coatings on metals has been investigated. The basic principles of construction of polymerizable gels and their advantages over partial gels, which are obtained from highly dispersed metal oxides, are noted. The morphology and chemical composition of the surface of steel and magnesium alloys modified with the help of gels have been studied by means of X-ray photoelectron spectroscopy. It was found that when styrene-acrylic dispersion interacts with magnesium alloy, a porous structure consisting of organomagnesium and polymer structures is formed on its surface. A uniform polymer coating with good adhesion to the substrate is formed on the surface of low carbon steel. The mechanism of formation of porous titanium dioxide structures on the steel surface obtained by sol-gel technology is considered. It is shown that the inclusion of organosilanes in the composition of porous titanium dioxide gel significantly increases the mechanical strength of the coating and its adhesion to the steel surface.

About the Authors

Yu. B. Makarychev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

 Leninsky pr. 31, 119071 Moscow



O. YU. Grafov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



D. B. Vershok
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky pr. 31, 119071 Moscow



References

1. Q. Wang, S. Fu, T. Yu, Emulsion polymerization, Prog. Polym. Sci., 1994, 19, no. 4, 703–753. doi: 10.1016/0079-6700(94)90031-0

2. H. Kawaguchi, Functional polymer microspheres, Prog. Polym. Sci., 2000, 25, no 8, 1171–1210. doi: 10.1016/S0079-6700(00)00024-1

3. A. Gharieh, S. Khoee, A.R. Mahdavian, Advances in colloid and interface science emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics, Adv. Colloid Interface Sci., 2019, 269, 152–186. doi: 10.1016/j.cis.2019.04.010

4. W. Wang, M.-J. Zhang and L.-Y. Chu, Functional polymeric microparticles engineered from controllable microfluidic emulsion, Acc. Chem. Res., 2014, 47, no. 2, 373–384. doi: 10.1021/ar4001263

5. J.P. Rao and K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters, Prog. Polym. Sci., 2011, 36, no. 7, 887–913. doi: 10.1016/j.progpolymsci.2011.01.001

6. С.Н. Степин, Т.В. Николаева и П.В. Гришин, Применение водно-дисперсионных материалов на основе акриловых сополимеров для антикоррозионной защиты металлов, Вестник Казанского технологического университета, 2014, 17, № 6, 219–220.

7. G.A. Howarth, Polyurethanes, polyurethane dispersions and polyureas: Past, present and future, Surf. Coat. Int. Part B, 2003, 86, no. 2, 111–118. doi: 10.1007/BF02699621

8. P.A. Sørensen, S. Kiil, K. Dam-Johansen and C.E. Weinel, Anticorrosive coatings: a review, J. Coat. Technol. Res., 2009, 6, no. 2, 135–176. doi: 10.1007/s11998-008-9144-2

9. R. Kasemann and H.K. Schmidt, Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites. New J. Chem., 1994, 18, no. 10, 1117– 1123. doi: 10.22028/D291-24466

10. G. Schottner, Hybrid sol-gel-derived polymers: applications of multifunctional materials, Chem. Mater., 2001, 13, 3422–3435. doi: 10.1021/cm011060m

11. S.V. Lamaka, M.F. Montemor, A.F. Galio, M.L. Zheludkevich, C. Trindade, L.F. Dick and M.G.S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy Electrochim Acta, 2008, 53, 4773–4783. doi: 10.1016/j.electacta.2008.02.015

12. S.Y. Zhang, Q. Li, J. Fan, W. Kang, W. Hu and X.K. Yang, Novel composite films prepared by sol-gel technology for the corrosion protection of AZ91D magnesium alloy, Prog.Org.Coat., 2009, 66, no. 3, 328–335. doi: 10.1016/j.porgcoat.2009.08.011

13. A.N. Khramov, V.N. Balbyshev, N.N. Voevodin and M.S. Donley, Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes, Prog.Org. Coat., 2003, 47, no. 3–4, 207–213. doi: 10.1016/S0300-9440(03)00140-1

14. X. Pan, J. Wu, Y. Ge, K. Xiao, H. Luo, S. Gao and X. Li, Preparation and characterization of anticorrosion Ormosil sol-gel coatings for aluminum alloy, J. Sol-Gel Sci. Technol., 2014, 72, 8–20. doi: 10.1007/s10971-014-3414-5

15. R.B. Figueira, C.J.R. Silva and E.V. Pereira, Influence of experimental parameters using the dip-coating method on the barrier performance of hybrid sol-gel coatings in strong alkaline environments Coatings, 2015, 5, no. 2, 124–141. doi: 10.3390/coatings5020124

16. R.A. Waldo, An iteration procedure to calculate film compositions and thicknesses in electron-probe microanalysis, Microbeam Analysis, 1988, 310–314.

17. P.J. Cumpson and M.P. Seah, Elastic scattering correction in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use on overlayer/substrate experiments, Surf. Interface Anal., 1997, 25, no. 6, 430–446. doi: 10.1002/(SICI)1096-9918(199706)25:63.0.CO;2-7

18. Yu. Makarychev, N. Gladkikh, I. Arkhipushkin and Yu. Kuznetsov, Corrosion inhibition of low-carbon steel by hydrophobic organosilicon dispersions, Metals, 2021, 11, no. 8, 1269. doi: 10.3390/met11081269


Review

For citations:


Makarychev Yu.B., Grafov O.Yu., Vershok D.B. Application of polymerizable and alkoxide gels for formation of conversion coatings on metals. Title in english. 2024;(3):159-173. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-159-173

Views: 79


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.