The effect of octane acid-based inhibitors on the corrosion and electrochemical properties of B4C-BN–Bi2O3–MnO2 oxide ceramic coatings on non–alloy steel
https://doi.org/10.61852/2949-3412-2024-2-3-174-184
Abstract
The effect of mixed inhibitors based on octanoic acid and nitrogen compounds with a negative degree of oxidation on the corrosion properties of a ceramic oxide coating of the composition B4C–BN–Bi2O3–MnO2 has been studied. The coating was synthesized by laser sintering of a powder mixture on the surface of low-carbon non-alloy steel. As a result of laser treatment, an oxide-ceramic layer is formed on the metal surface, which has antifriction properties and high hardness. The phase composition and surface relief of the resulting composite are investigated. A decrease in the corrosion resistance of the resulting composite under conditions of electrochemical corrosion in a neutral buffer solution medium compared with untreated steel has been established. To increase the corrosion resistance, an inhibitory treatment method was applied. The following compositions were used as inhibitors: octanoic acid, octanoic acid–hexamethylenetetramine, octanoic acid– hydrazine hydrate and octanoic acid-2,4-dinitrophenylhydrazine. The inhibitors were applied by impregnation methods followed by heating of the samples to 120°C. All the studied compound inhibitors increased the corrosion resistance of the material to electrochemical corrosion in a neutral borate buffer solution.
About the Authors
S. M. ReshetnikovRussian Federation
426034, Izhevsk, Universitetskaya str., 1
A. V. Tyukalov
Russian Federation
426034, Izhevsk, Universitetskaya str., 1
E. V. Kharanjevsky
Russian Federation
426034, Izhevsk, Universitetskaya str., 1
References
1. S.M. Reshetnikov, E.V. Kharanzhevskii and M.D. Krivilev, Corrosion-electrochemical behavior of composite layers produced by laser sintering of nanoscale iron-nickel powders, Prot Met Phys Chem Surf., 2012, 48, 729–734. doi: 10.1134/S207020511207012X
2. A.V. Efimov, E.V. Kharanzhevskiy, S.M. Reshetnikov, T.A. Pisarevа and M.G. Gotsuk, Effect of inhibitors on the electrochemical corrosion of heatresistant ceramic coatings deposited on non-alloy steel, Int. J. Corros. Scale Inhib., 2021, 10, 2, 838–850. doi: 10.17675/2305-6894-2021-10-2-22
3. E.V. Kharanzhevskiy, S.M. Reshetnikov, A.V. Efimov, F.Z. Gil’mutdinov and M.D. Krivilev, Application of some inhibitors for improving the corrosion resistance of ceramic coatings deposited on non-alloy steel by short-pulse laser treatment, Int. J. Corros. Scale Inhib., 2020, 9, 1, 44–55. doi: 10.17675/2305-6894-2021-10-2-22
4. V.A. Katkar et al, Effect of the reinforced boron carbide particulate content of AA6061 alloy on formation of the passive film in seawater, Corros. Sci., 2011, 53, no. 9, 2700–2712. doi: 10.1016/j.corsci.2011.04.023
5. D.B Miracle, Metal matrix composites–from science to technological significance, Compos. Sci. Technol., 2005, 65, 15–16, 2526–2540. doi: 10.1016/j.compscitech.2005.05.027
6. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov et al, Towards eliminating friction and wear in plain bearings operating without lubrication, Sci. Rep., 2023, 13, 17362. doi: 10.1038/s41598-023-44702-6
7. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov, F.Z. Gil'mutdinov, N.N. Soboleva and M.D. Krivilyov, Effect of oxygen in surface layers formed during sliding wear of Ni–ZrO2 coatings, Surf. Coat. Technol., 2022, 434,128174. doi: 10.1016/j.surfcoat.2022.128174
8. E.V. Kharanzhevskiy, A.G. Ipatov, A.V. Makarov, F.Z. Gil’mutdinov, N.N. Soboleva and M.D. Krivilyov, Tribological performance of boron-based superhard coatings sliding against different materials, Wear, 2021, 477, 203835. doi: 10.1016/j.wear.2021.203835
9. E.V. Kharanzhevskiy et al, Ultralow friction behaviour of B4C-BN-MeO composite ceramic coatings deposited on steel, Surf. Coat. Technol., 2020, 390, 125664. doi: 10.1016/j.surfcoat.2020.125664
10. Я.М. Колотыркин и В.М. Княжева, Свойства карбидных фаз и коррозионная стойкость нержавеющих сталейб В сб.«Итоги науки и техники. Серия Коррозия и защита от коррозии». М.: ВИНИТИб 1974, 3, 5–83
11. P. Linhardt, Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms, Mater. Corros., 2010, 61, no. 12, 1034– 1039. doi: 10.1002/maco.201005769
12. E.V. Kharanzhevskiy, S.M. Reshetnikov and A.V. Tyukalov, Effect of inhibitors on the corrosion and electrochemical properties of B4C–FeO oxide-ceramic coatings on steel, Int. J. Corros. Scale Inhib., 2023, 12, no. 2, 771–782. doi: 10.17675/2305-6894-2023-12-2-21
13. A.Yu. Luchkin et al, Screening of individual organic compounds as chamber corrosion inhibitors, Int. J. Corros. Scale Inhib., 2022, 11, no. 1, 257–265. doi: 10.17675/2305-6894-2021-11-1-14
14. A.Yu. Luchkin, O.S. Makarova, S.S. Vesely et al, Ethylhexanoic acid as a chamber inhibitor of zinc-plated steel, Int. J. Corros. Scale Inhib., 2023, 12, no. 2, 586–596. 10.17675/2305-6894-2023-12-2-11
15. Патент № 2780332 C1 Российская Федерация, МПК C23F 11/00. Летучий ингибитор коррозии черных металлов: № 2022114639: заявл. 31.05.2022: опубл. 21.09.2022, Н.Н. Андреев, О.А. Гончарова, Ю.И. Кузнецов, А.Ю. Лучкин; заявитель Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук.
16. A.Yu. Luchkin et al, Screening of individual organic compounds as chamber corrosion inhibitors, Int. J. Corros. Scale Inhib., 2022, 11, no. 1, 257–265. doi: 10.17675/2305-6894-2021-11-1-14
17. I.V. Tsvetkova et al, Chamber inhibitors of steel corrosion based on lauric acid, Int. J. Corros. Scale Inhib., 2021, 10, no. 1, 107–119. doi: 10.17675/2305-6894-2021-10-1-6
18. G.S. Suresh, C.L. Aravinda, M.F. Ahamed, S.M. Mayanna, Hydrazine and substituted hydrazine as corrosion inhibitors for mild steel in simulated seawater, Indian J. Chem. Technol., 1999, 6, 301–304.
Review
For citations:
Reshetnikov S.M., Tyukalov A.V., Kharanjevsky E.V. The effect of octane acid-based inhibitors on the corrosion and electrochemical properties of B4C-BN–Bi2O3–MnO2 oxide ceramic coatings on non–alloy steel. Title in english. 2024;(3):174-184. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-3-174-184