Preview

Title in english

Advanced search

Electrochemical properties and self-healing processes of multilayer metal-filled coatings during exposure in an aggressive environment

https://doi.org/10.61852/2949-3412-2024-2-4-59-79

Abstract

As part of the development of the concept of creating "smart" adaptive polymer anticorrosive coatings, the kinetics of electrochemical properties of thin- and thick-layer multilayer Zn-filled coatings at various temperatures from 23 to 60°C during prolonged exposure up to 150 days in 3% NaCl were studied. It is shown that at low temperatures and, consequently, low corrosion rates of zinc (Zn) filler, it is advisable to increase the thickness of highly filled composite coatings with active solid-phase additives in order to reduce porosity and create conditions for a restorative increase in impedance. Activation of the self-healing process in multilayer coatings can be realized with an increase in temperature. So already at 40°C, the impedance begins to grow over the entire frequency range. At the same time, an increase in the ohmic component in the high-frequency (HF) region is recorded, with a simultaneous drop in capacitance and an increase in the phase anglemodulus up to 86°, which indicates an increase in the hydrophobicity of the coating material. In parallel, the activation of tread properties is observed. The results obtained show that optimization of the coating design, in particular multilayering, combined with acceleration of coating’s internal diffusion and corrosion processes, make it possible to give the coating "smart" properties by implementing adaptive impedance growth and blocking defects with a corroding metal dispersed filler while significantly extending the period of antocorrosion protection.

About the Authors

V. А. Golovin
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky prosp. 31 bldg. 4, 119071, Moscow



S. А. Dobriyan
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Russian Federation

Leninsky prosp. 31 bldg. 4, 119071, Moscow



References

1. A. Cohades, C. Branfoot, S. Rae, I. Bond and V. Michaud, Progress in Self-Healing Fiber-Reinforced Polymer Composites, Adv. Mater. Interfaces, 5, no. 17. 2018. doi: 10.1002/admi.201800177.

2. М.Ю. Квасников, А.В. Макаров, А.А. Силаева, Н.В. Федякова и Т.М. Квасников, Самовосстановливающиеся лакокрасочные полимерные покрытия. Журнал прикладной химии, 2019, 92, № 5, 656-667. doi: 10.1134/S0044461819050165

3. V.A. Golovin, S.A. Dobriyan and V.A. Shchelkov, Processes of adaptation and protective characteristics growth in multilayer polymer coatings modified with carbon nanotubes, Int. J. Corros. Scale Inhib., 2023, 12, no 4, 1849-1862. doi: 10.17675/2305-6894-2023-12-4-23

4. K. Naresh, W.J. Cantwell, K.A. Khan, and R. Umer, Single and multilayer core designs for Pseudo-Ductile failure in honeycomb sandwich structures, Compos. Struct., 2021, 256, 113059. doi: 10.1016/j.compstruct.2020.113059.

5. P.A. Bolimowski, I.P. Bond, and D.F. Wass, Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2016, 374, no. 2061. doi: 10.1098/rsta.2015.0083

6. F. Ahangaran, M. Hayaty, A.H. Navarchian, and F. Picchioni, Micromechanical assessment of PMMA microcapsules containing epoxy and mercaptan as selfhealing agents, Polym. Test., 2017, 64, 330-336. doi: 10.1016/j.polymertesting.2017.10.014

7. A.C.M. de Carvalho, E.P. da C. Ferreira, M. Bomio, J.D.D. Melo, A.P. Cysne Barbosa, and M.C.B. Costa, Influence of synthesis parameters on properties and characteristics of poly (urea-formaldehyde) microcapsules for selfhealing applications, J. Microencapsul., 2019, 36, no. 4, 410-419. doi: 10.1080/02652048.2019.1638462.

8. D.Y. Zhu, M.Z. Rong, and M.Q. Zhang, Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation, Prog. Polym. Sci., 2015, 49-50, 175-220. doi: 10.1016/j.progpolymsci.2015.07.002.

9. V.A. Golovin, S.A. Dobriyan and A.K. Buryak, Polymer coatings’ long-term adaptation and self-healing effects in corrosive media. Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1172-1190. doi: 10.17675/2305-6894-2022-11-3-16

10. В.А. Головин, С.А. Добриян и В.Б. Лукин, Рост изолирующей способности полимерных покрытий с активными твердофазными и ингибирующими добавками при экспозиции в агрессивной среде, Коррозия: Материалы Защита, 2018, 6, 23-31.

11. V.A. Golovin, S.A. Dobriyan, V.B. Lukin and K.V. Kolinenko, On the Choice of an Equivalent Circuit for the Description of Electrochemical Impedance Spectra of ZnFilled Polymer Primers and Coatings, Prot. Met. Phys. Chem. Surf., 2017, 53(7), 1221-1229. doi: 10.1134/S2070205117070061

12. V.A. Golovin and S.A. Dobriyan, Evolution of EIS properties of composite polymer protective coatings in aggressive environments, Int. J. Corros. Scale Inhib., 2021, 10, no. 4, 1493-1515. doi:10.17675/2305-6894-2021-10-4-8

13. C. Gabrielli, Use and application of electrochemical impedance techniques. Farnborough, 1990, 78.

14. F. Brambilla, E. Campazzi, D. Sinolli, P-J Lathiere and etc, Accelerated corrosion testing: a prodictive tool, Theses of The Annual Congress of the European Federation of Corrosion (EUROCORR 2018), Cracow, Poland, September 9-13, 2018, 120935.

15. Н.А. Поклонский, Н.И. Горбачук, Основы импедансной спектроскопии композитов, Мн.: БГУ, 2005, 130 с.

16. D. Ramesh and T. Vasudevan, Evaluation of Corrosion Stability of Water Soluble Epoxy-Ester Primer through Electrochemical Studies, Mater. Sci. Appl., 2012, 3, no. 6, 333-347. doi: 10.4236/msa.2012.36049.

17. ISO 16773-1, 2, 3, 4 “Electrochemical impedance spectroscopy (EIS) on highimpedance coated specimens”.

18. F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coating, J. Appl. Electrochem., 1995, 25, 187-202. doi: 10.1007/BF00262955

19. Б.Б. Дамаскин, Принципы современных методов изучения электрохимических реакций. М., 1965, 102с.

20. З.Б. Стойнов, Б.М. Графов, Б. Савова-Стойнова и В.В. Елкин, Электрохимический импеданс, Москва : Наука, 1991. 328c.

21. Н.П. Жук, Курс теории коррозии и защиты металлов, Москва, «Металлургия», 1976, 472с.


Review

For citations:


Golovin V.А., Dobriyan S.А. Electrochemical properties and self-healing processes of multilayer metal-filled coatings during exposure in an aggressive environment. Title in english. 2024;(4):59-79. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-4-59-79

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.