Inhibited molybdenum and tungstate conversion coatings for the protection of aluminum alloy AMg3
https://doi.org/10.61852/2949-3412-2024-2-4-80-92
Abstract
Inhibitors and coatings, for example, obtained by chemical oxidation, can be used to prevent corrosion of aluminum alloys. The combination of these two protection methods makes it possible to obtain coatings with high protective properties. In this work, ultrathin inhibited conversion coatings were studied, which were obtained in molybdenum and tungstate converting compounds and their modifications, including well-known corrosion inhibitors of aluminum alloys. It has been shown that the subsequent treatment of coatings in a corrosion inhibitor solution has a greater effect on coatings obtained in a solution based on phosphoric acid than on coatings obtained in a solution based on molybdenum and sodium tungstate. This difference seems to be related to the structure and composition of the coatings under study. Among inorganic modifying additives, the best effect of increasing protective properties is demonstrated by sodium silicate and sodium tetraborate, and among organic ones – tannin and 5-methyl benzotriazole. According to corrosion tests in the humidity chamber, coatings obtained in converting compounds with the addition of sodium silicate demonstrate the greatest corrosion resistance.
About the Authors
A. S. KonovalovRussian Federation
Leninsky prosp. 31 bldg. 4, 119071, Moscow
Yu. A. Kuzenkov
Russian Federation
Leninsky prosp. 31 bldg. 4, 119071, Moscow
O. Yu. Grafov
Russian Federation
Leninsky prosp. 31 bldg. 4, 119071, Moscow
S. Yu. Rybakov
Russian Federation
Leninsky prosp. 31 bldg. 4, 119071, Moscow
References
1. В.С. Синявский и В.Д. Васильков, Коррозия и защита алюминиевых сплавов, М.: Металлургия, 1986, С. 386.
2. Коррозия алюминия и алюминиевых сплавов, Под ред. Джозефа Р. Дейвиса, М.: НП «АПРАЛ», 2016, С. 333.
3. A. Chahid, M. Chafi, M. Essahli, A.A. Alrashdi and H. Lgaz, Exploring the efficacy of Congo Red dye as a corrosion inhibitor for aluminum in HCl solution: An interdisciplinary study with RSM modeling and theoretical simulations, Arabian J. Chem., 2024, 17(7), 105810. doi: 10.1016/j.arabjc.2024.105810
4. K. Xhanari and M. Finšgar, Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arabian J. Chem., 2019, 12(8), 4646-4663. doi: 10.1016/j.arabjc.2016.08.009
5. Z. Bergseth, X. Qi, V. Upadhyay and D. Battocchi, Lithium salts as active corrosion inhibitors for aluminum substrates, Appl. Surf. Sci. Adv., 2023, 16, 100432. doi: 10.1016/j.apsadv.2023.100432
6. Yu.I. Kuznetsov, Organic corrosion inhibitors: where are we now? A review. Part II. Passivation and the role of chemical structure of carboxylates. Int. J. Corros. Scale Inhib., 2016, 5(4),282-318. doi: 10.17675/2305-6894-2016-5-4-1
7. Commission Directive 2001/59/EC of 6 August 2001 Adapting to technical progress for the 28th time Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions concerning the classification, packaging and labeling of hazardous substances relation to the EEA). Official Journal L 225, 21/08/2001, p. 0001-0333.
8. H. Hassannejad, M. Moghaddasi, E. Saebnoori and A.R. Baboukani, Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy, J. Alloys Compd., 2017, 725, 968-975. doi: 10.1016/j.jallcom.2017.07.253
9. S. Zhang, C. Wang, S. Zhao, A. Niu, Y. Ma and B. Liu, Enhanced long-term corrosion protection of 2A14 aluminum alloy: Hybrid effect of micro-arc oxidation coating and cerium based conversion treatment, Surf. Coat. Technol., 2023, 464, 129579. doi: 10.1016/j.surfcoat.2023.129579
10. S.S. Golru, M.M. Attar and B. Ramezanzadeh, Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050, J. Ind. Eng. Chem., 2015, 24, 233-244. doi: 10.1016/j.jiec.2014.09.036
11. C.S. Liang, Z.F. Lv, Y.L. Zhu, S.A. Xu and H. Wang, Protection of aluminium foil AA8021 by molybdate-based conversion coatings, Appl. Surf. Sci., 2014, 288, 497-502. doi: 10.1016/j.apsusc.2013.10.060
12. Yu.A. Kuzenkov, S.V. Oleinik, A.S. Zimina, L.P. Kazanskii, V.N. Ivonin and V.A. Karpov, Submicron free-chromate chemical conversion coatings on AMg3 aluminum alloy, Prot. Met. Phys. Chem. Surf., 2017, 52(7), 1205-1210. doi: 10.1134/S2070205116070121
13. Yu.A. Kuzenkov, D.O. Chugunov, S.V. Oleynik and V.L. Voititsky, Protective chromate-free conversion coatings on AMg6 aluminum alloy with different types of surface treatment, Int. J. Corros. Scale Inhib., 2022, 11(2), 541-552. doi: 10.17675/2305-6894-2022-11-2-5
14. Yu.A. Kuzenkov, A.S.Konovalov and O.Y. Grafov, Influence of ph and modifying additives on the protective properties of ultrathin conversion coatings for AMg3 aluminum alloy, Int. J. Corros. Scale Inhib., 2023, 12(1), 170-179. doi: 10.17675/2305-6894-2023-12-1-10
15. Ю.А. Кузенков, А.С. Коновалов, О.Ю. Графов и А.Ю. Лучкин, Модификация ультратонких конверсионных покрытий на алюминиевом сплаве АМг3 и их взаимодействие с лакокрасочным покрытием, Коррозия: защита материалов и методы исследований, 2023, 2, 37-48. doi: 10.61852/2949-3412-2023-1-2-37-48.
Review
For citations:
Konovalov A.S., Kuzenkov Yu.A., Grafov O.Yu., Rybakov S.Yu. Inhibited molybdenum and tungstate conversion coatings for the protection of aluminum alloy AMg3. Title in english. 2024;(4):80-92. (In Russ.) https://doi.org/10.61852/2949-3412-2024-2-4-80-92