Антикоррозионная эффективность супергидрофобных покрытий на металлах. Обзор.
https://doi.org/10.61852/2949-3412-2024-3-1-1-60
Аннотация
В последние два десятилетия создание гидрофобных и супергидрофобных покрытий на металлах и практическое применение этих покрытий для самоочистки, защиты от обледенения, разделения масляно-водяной смеси и особенно для защиты от коррозии интенсивно обсуждались в исследовательском сообществе. В этом обзоре рассматриваются металлы и их соответствующая защита от коррозии в различных условиях (в воде, в хлоридных растворах, в атмосфере с агрессивными компонентами) с помощью супергидрофобных материалов и методов их изготовления. Рассматриваются как технологически более совершенные методы, основанные на лазерном текстурировании поверхности металла или плазменном травлении для создания многомодальной шероховатости с последующим нанесением слоя вещества с низкой поверхностной энергией, в первую очередь, фтороксисиланов, так и более простые, обычно экологически чистые и менее затратные подходы, основанные на химическом травлении поверхности металла, химическом или электрохимическом осаждении металлов одинаковой или разной природы с последующей обработкой гидрофобизирующими агентами, такими, как миристиновая или стеариновая кислоты. Исследования антикоррозионных свойств покрытий проводились преимущественно методами электрохимической поляризации и электрохимической импедансной спектроскопии, а в редких случаях – прямыми коррозионными испытаниями. В настоящем обзоре основное внимание уделено защите железа, сталей, меди, цинка, алюминия и магния.
Ключевые слова
Об авторах
Л. Е. ЦыганковаРоссия
ул. Интернациональная, 33, Тамбов, 392000
М. В. Вигдорович
Россия
пер. Ново-Рубежный, 28, Тамбов, 392022
In der Steele 2, D-40599, Düsseldorf, 40470 Germany
Список литературы
1. Л.Б. Бойнович и А.М. Емельяненко, Гидрофобные материалы и покрытия: принципы создания, свойства, применение, Успехи химии, 2008, 77, № 7, 619–638. doi: 10.1070/RC2008v077n07ABEH003775
2. Д.А. Алпысбаева, Д.Б. Вершок, А.М. Емельяненко, О.В. Батищев, Ю.И. Кузнецов и Л.Б. Бойнович, Супергидрофобизация низкоуглеродистой стали с конверсионными покрытиями, Коррозия: материалы, защита, 2013, № 8, 42–47.
3. C.В. Гнеденков, В.С. Егоркин, С.П. Синебрюхов, И.Е. Вялый, А.С. Пашинин, А.М. Емельяненко и Л.Б. Бойнович, Супергидрофобные композитные покрытия на поверхности магниевого сплава, Вестник ДВО РАН, 2013, № 5, 3–11.
4. Y. Wang, J. Xue, Q. Wang, Q.Q. Chen and J. Ding, Verification of icephobic/anti-icing properties of a superhydrophobic surface, ACS Appl. Mater. Interfaces, 2013, 5, no. 8, 3370–3381. doi: 10.1021/am400429q
5. G. Momen and M. Farzaneh, Facile approach in the development of icephobic hierarchically textured coatings as corrosion barrier, Appl. Surf. Sci., 2014, 299, 41–46. doi: 10.1016/j.apsusc.2014.01.179
6. R. Menini, Z. Ghalmi and M. Farzaneh, Highly resistant icephobic coatings on aluminum alloys, Cold Reg. Sci. Techno, 2011, 65, no. 1, 65–69. doi: 10.1016/j.coldregions.2010.03.004
7. A. Lazauskas, A. Cuobiene, I. Prosycevas, V. Baltrusaitis, V. Grigaliunas, P. Narmontas and J. Baltrusaitis, Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles, Mater. Charact., 2013, 82, 9–16. doi: 10.1016/j.matchar.2013.04.017
8. M. Zou, S. Beckford, R. Wei, C. Ellis, G. Hatton and M.A. Miller, Effects of surface roughness and energy on ice adhesion strength, Appl. Surf. Sci., 2011, 257, no. 8, 3786– 3792. doi: 10.1016/j.apsusc.2010.11.149
9. A.J. Meuler, J.D. Smith, K.K. Varanasi, J.M. Mabry, G.H. McKinley and R.E. Cohen, Relationships between water wettability and ice adhesion, ACS Appl. Mater. Interfaces, 2010, 2, no. 11, 3100–3110. doi: 10.1021/am1006035
10. G. Momen, R. Jafari and M. Farzaneh, Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness, Appl. Surf. Sci., 2015, 349, 211–218. doi: 10.1016/j.apsusc.2015.04.180
11. С. Antonini, M. Innocenti, T. Horn, M. Marengo and A. Amirfazli, Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems, Cold Reg. Sci. Technol., 2011, 67, nos. 1–2, 58–67. doi: 10.1016/j.coldregions.2011.02.006
12. V. Bahadur, L. Mishchenko, B. Hatton, J.A. Taylor, J. Aizenberg and T. Krupenkin, Predictive model for ice formation on superhydrophobic surfaces, Langmuir, 2011, 27, no. 23, 14143–14150. doi: 10.1021/la200816f
13. L. Mishchenko, B. Hatton, V. Bahadur, J.A. Taylor, T. Krupenkin and J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS Nano, 2010, 4, no. 12, 7699–7707. doi: 10.1021/nn102557p
14. Y. Zhou, S. Niu and J. Lü, The influence of freezing drizzle on wire icing during freezing fog events, Advances in Atmospheric Sciences, 2013, 30, 1053–1069. doi: 10.1007/s00376-012-2030-y
15. V.F. Petrenko, The effect of static electric fields on ice friction, J. Appl. Phys., 1994, 76, 1216–1219. doi: 10.1063/1.357850
16. IEEE guide for test methods and procedures to evaluate the electrical performance of insulators in freezing conditions, IEEE Std 1783–2009, 2009, 1–38. doi: 10.1109/IEEESTD.2009.5291198
17. M. Farzaneh and O.T. Melo, Flashover performance of insulators in the presence of short icicles, Int. J. Offshore Polar Eng., 1994, 4, no. 2, 112–118.
18. С. Laforte, J.I. Laforte and J.C. Carrier, How a solid coating can reduce the adhesion of ice on a structure, Proceedings of the International Workshop on Atmospheric Icing of Structures (IWAIS), 2002, 1–5.
19. S.A. Kulinich, S. Farhadi, K. Nose and X.W. Du, Superhydrophobic surfaces: Are they really ice-repellent? Langmuir, 2011, 27, no. 1, 25–29. doi: 10.1021/la104277q
20. V.F. Petrenko and S. Peng, Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs), Can. J. Phys., 2003, 81, nos. 1–2, 387–393. doi: 10.1139/p03-014
21. J.L. Laforte, M.A. Allaire and J. Laflamme, State-of-the-art on power line de-icing, Atmos. Res., 1998, 46, no. 1, 143–158. doi: 10.1016/S0169-8095(97)00057-4
22. J.J. Victor, D. Facchini and U. Erb, A low-cost method to produce superhydrophobic polymer surfaces, J. Mater. Sci., 2012, 47, 3690–3697. doi: 10.1007/s10853-011-6217-x
23. D. Zhang, L. Wang, H. Qian and X. Li, Superhydrophobic surfaces for corrosion protection: a review of recent progresses and future directions, J. Coat. Technol. Res., 2016, 13, no. 1, 11–29. doi: 10.1007/s11998-015-9744-6
24. Linda Y.L. Wu, Q. Shao, X.C. Wang, H.Y. Zheng and C.C. Wong, Hierarchical structured sol–gel coating by laser textured template imprinting for surface superhydrophobicity, Soft Matter, 2012, 8, no. 23, 6232–6238. doi: 10.1039/C2SM25371B
25. В.С. Багоцкий, Л.Н. Некрасов и Н.А. Шумилова, Электрохимическое восстановление кислорода, Успехи химии, 1965, 34, № 10, 1697–1720.
26. Л.И. Антропов и В.Ф. Панасенко, О механизме ингибирующего действия органических веществ сероводородной коррозии металлов, Итоги науки и техники. Серия: Коррозия и защита металлов, Москва, Изд-во ВИНИТИ, 1975, № 4, 46–112.
27. А.Н. Фрумкин, В.С. Багоцкий, З.А. Иофа и Б.Н. Кабанов, Кинетика электродных процессов, Москва, Изд-во МГУ, 1952, 319 с.
28. А.Н. Фрумкин, Перенапряжение водорода. Избранные труды, Москва, Наука, 1988, 240 с.
29. V.I. Vigdorovich, T.P. D’yachkova, O.L. Pupkova and L.E. Tsygankova, Interrelation between kinetics of the hydrogen ion reduction on iron and the hydrogen diffusion flux into carbon steel in acidic solutions, Russ. J. Electrochem., 2001, 37, 1249–1257. doi: 10.1023/A:1013275427029
30. V. Marinović and A.R. Despić, Pyrophosphoric acid as a source of hydrogen in cathodic hydrogen evolution on silver, Electrochim. Acta, 44, no. 23, 4073–4077. doi: 10.1016/S0013-4686(99)00123-1
31. M.R. Gennero de Chialvo and A.C. Chialvo, Existence of two sets of kinetic parameters in the correlation of the hydrogen electrode reaction, J. Electrochem. Soc., 2000, 147, no. 5, 1619–1622. doi: 10.1149/1.1393407
32. C. Gabrielli, P.P. Grand, A. Lasia and H. Perrot, Investigation of hydrogen adsorptionabsorption into thin palladium films: I. Theory, J. Electrochem. Soc., 2004, 151, no. 11, A1925–A1936. doi: 10.1149/1.1797033
33. K. Bonhöffer and K.E. Heusler, Abhängigkeit der anodischen Eisenauflösung von der Säurekonzentration, Z. Phys. Chem. Neue Folge, 1956, 8, nos. 5–6, 390–393. doi: 10.1524/zpch.1956.8.5_6.390
34. K. Bonhöffer and K.E. Heusler, Bemerkung über die anodische Auflösung von Eisen, Z. Elektrochemie, 1957, 61, no. l, 122–123.
35. K.E. Heusler, Der Einfluß der Wasserstoffionenkonzentration auf das elektrochemische Verhalten des aktiven Eisens in sauren Lösungen, Z. Elektrochemie, 1958, 62, no. 5, 582–587.
36. J.O’М. Bockris, D. Drazic and A.R. Despic, The electrode kinetics of the dissolution and deposition of iron, Electrochim. Acta, 1961, 4, nos. 2–4, 325–361. doi: 10.1016/0013-4686(61)80026-1
37. J.O’М. Bockris and D. Drazic, Kinetic of deposition and dissolution of iron: Effect of alloying impurities, Electrochim. Acta, 1962, 7, no. 3, 293–313. doi: 10.1016/0013-4686(62)87007-8
38. G.M. Florianovich, L.A. Sokolova and Ya.М. Kolotyrkin, On the mechanism of the anodic dissolution of iron in acid solutions, Electrochim. Acta, 1967, 12, no. 7, 879–887. doi: 10.1016/0013-4686(67)80124-5
39. J.L. Song, W.J. Xu, X. Liu, Z.F. Wei and Y. Lu, Fabrication of superhydrophobic Cu surfaces on Al substrates via a facile chemical deposition process, Materials Letters, 2012, 87, 43–46. doi: 10.1016/j.matlet.2012.07.077
40. S. Khorsand, K. Raeissi, F. Ashrafizadeh and M.A. Arenas, Relationship between the structure and water repellency of nickel-cobalt alloy coatings prepared by electrodeposition process, Surface Coatings Technology, 2015, 276, 296–304. doi: 10.1016/j.surfcoat.2015.07.010
41. R. Blossey, Self-cleaning surfaces – virtual realities, Nat. Mater., 2003, 2, 301–306. doi: 10.1038/nmat856
42. R. Fürstner, W. Barthlott, C. Neinhuis and P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 2005, 21, no. 3, 956–961. doi: 10.1021/la0401011
43. B. Bhushan, Y.C. Jung and K. Koch, Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir, 2009, 25, no. 5, 3240–3248. doi: 10.1021/la803860d
44. R. Langer and D.A. Tirrell, Designing materials for biology and medicine, Nature, 2004, 428, 487–492. doi: 10.1038/nature02388
45. Y. Liu, L. Mu, B. Liu and J. Kong, Controlled switchable surface, Chemistry. A European Journal, 2005, 11, no. 9, 2622–2631. doi: 10.1002/chem.200400931
46. E. Bormashenko, Young, Boruvka–Neumann, Wenzel and Cassie–Baxter equations as the transversality conditions for the variational problem of wetting, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 345, nos. 1–3, 163–165. doi: 10.1016/j.colsurfa.2009.04.054
47. A.A. Thorpe, V. Peters, J.R. Smith, T.G. Nevell and J. Tsibouklis, Poly(methylpropenoxyfluoroalkylsiloxane)s: a class of fluoropolymers capable of inhibiting bacterial adhesion onto surfaces, J. Fluorine Chem., 2000, 104, no. 1, 37–45. doi: 10.1016/S0022-1139(00)00225-6
48. T. Nishino, M. Meguri, K. Nakamae, M. Matsushita and Y. Ueda, The Lowest Surface Free Energy Based on −CF3 Alignment, Langmuir, 1999, 15, no. 13, 4321–4323. doi: 10.1021/la981727s
49. R. Qiu, D. Zhang and P. Wang, Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition, Cor. Sci., 2013, 66, 350–359. doi: 10.1016/j.corsci.2012.09.041
50. Y. Qing, C. Yang, C. Hu, Y. Zheng and C. Liu, A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance, Appl. Surf. Sci., 2015, 326, 48–54. doi: 10.1016/j.apsusc.2014.11.100
51. J.T. Simpson, S.R. Hunter and T. Aytug, Superhydrophobic materials and coatings: a review, Rep. Prog. Phys., 2015, 78, no. 8, 086501. doi: 10.1088/0034-4885/78/8/086501
52. E. Vazirinasab, R. Jafari and G. Momen, Application of superhydrophobic coatings as a corrosion barrier: A review, Surface and Coatings Technology, 2018, 341, 40–56. doi: 10.1016/j.surfcoat.2017.11.053
53. L. Ejenstam, M. Tuominen, J. Haapanen, J.M. Makela, J. Pan, A. Swerin and P.M. Claesson, Long-term corrosion protection by a thin nano-composite coating, Applied Surface Science, 2015, 357, 2333–2342. doi: 10.1016/j.apsusc.2015.09.238
54. L. Ejenstam, A. Swerin, J. Pan and P.M. Claesson, Corrosion protection by hydrophobic silica particle-polydimethylsiloxane composite coating, Cor. Sci., 2015, 99, 89–97. doi: 10.1016/j.corsci.2015.06.018
55. L. Ejenstam, L. Ovaskainen, I. Rodriguez-Meizoso, L. Wеgberg, J. Pan, A. Swerin and P.M. Claesson, The effect of superhydrophobic wetting state on corrosion protection – The AKD example, J. Colloid Interface Sci., 2013, 412, 56–64. doi: 10.1016/j.jcis.2013.09.006
56. D. Yu, J. Tian, J. Dai and X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater, Electrochim. Acta, 2013, 97, 409–419. doi: 10.1016/j.electacta.2013.03.071
57. L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov and A.K. Zaretskaya, Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers, Cor. Sci., 2012, 55, 238–245. doi: 10.1016/j.corsci.2011.10.023
58. Yu.I. Kuznetsov, D.B. Vershok, S.F. Timashev, A.B. Solovyeva, P.I. Misurkin, V.A. Timofeeva and S.G. Lakeev, Features of formation of magnetite coatings on low carbon steel in hot nitrate solutions, Russ. J. Electrochem., 2010, 46, 1155–1166.
59. С.В. Гнеденков, О.А. Хрисанфова и А.Г. Завидная, Плазменное электролитическое оксидирование металлов и сплавов в тартратсодержащих растворах, Владивосток, Дальнаука, 2008, 144 с.
60. A.M. Emelyanenko, F.M. Shagieva, A.G. Domantovsky and L.B. Boinovich, Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion, Appl. Surf. Sci., 2015, 332, 513–517. doi: 10.1016/j.apsusc.2015.01.202
61. A. Garcia-Giron, J.M. Romano, Y. Liang, B. Dashtbozorg, H. Dong, P. Penchev and S.S. Dimov, Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces, Appl. Surf. Sci., 2018, 439, 516–524. doi: 10.1016/j.apsusc.2018.01.012
62. V.I. Vigdorovich, L.E. Tsygankova, A.A. Uryadnikov, N.V. Shel, L.G. Knyazeva and E.D. Tanygina, The effect of nanocomposite superhydrophobic coating on corrosion and kinetics of electrode processes on steel in 0.5 M NaCl solution, Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, no. 7, 1209–1214. doi: 10.1134/S2070205117070176
63. D. Lv, J. Ou, M. Xue and F. Wang, Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution, Applied Surface Science, 2015, 333, 163–169. doi: 10.1016/j.apsusc.2015.02.012
64. E.Y. Shel, V.I. Vigdorovich, L.E. Tsygankova and M.B. Vigdorowitsch, Influence of the acidity of the medium and the activity of chloride ions on kinetics of partial electrode reactions on steel with a superhydrophobic surface in chloride media, Int. J. Corros. Scale Inhib., 2018, 7, no. 4, 528–541. doi: 10.17675/2305-6894-2018-7-4-4
65. V.I. Vigdorovich, L.E. Tsygankova, A.M. Emel’yanenko, M.N. Uryadnikova and E.Yu. Shel, The effect of superhydrophobic coating on the electrochemical behavior of carbon steel in chloride and hydrogen sulfide-chloride environments, Int. J. Corros. Scale Inhib., 2020, 9, no. 1, 171–181. doi: 10.17675/2305-6894-2020-10-1-10
66. L. Boinovich and A. Emel’yanenko, A wetting experiment as a tool to study the physicochemical processes accompanying the contract of hydrophobic and superhydrophobic materials with aqueous media, Adv. Colloid Interface Sci., 2012, 179, 133–141. doi: 10.1016/j.cis.2012.06.010
67. V.I. Vigdorovich, L.E. Tsygankova, M.N. Uryadnikova, K.A. Emel’yanenko, E.V. Chulkova and A.A. Uryadnikov, Protective effect of superhydrophobic coatings on carbon steel in different environments, Int. J. Corros. Scale Inhib., 2021, 10, no. 3, 1157–1167. doi: 10.17675/2305-6894-2021-10-3-19
68. В.И. Вигдорович и С.А. Закурнаев, Оценка вкладов полисульфидной пленки и ингибитора в защиту стали от сероводородной коррозии, Коррозия: материалы, защита, 2009, № 2, 17–22.
69. L.B. Boinovich and A.M. Emel’yanenko, The behaviour of fluoro- and hydrocarbon surfactants used for fabrication of superhydrophobic coatings at solid/water interface, Colloids Surf., A, 2015, 481, 167–175. doi: 10.1016/j.colsurfa.2015.05.003
70. L.E. Tsygankova, A.A. Uryadnikov, A.V. Dorokhov, L.G. Knyazeva, N.V. Shel and L.D. Rodionova, Protection of steel with a superhydrophobic coating against atmospheric corrosion in conditions of livestock buildings, Int. J. Corros. Scale Inhib., 2021, 10, no. 4, 1638–1645. doi: 10.17675/2305-6894-2021-10-4-16
71. T. Xiang, S. Ding, C. Li, S. Zheng, W. Hu, J. Wang and P. Liu, Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel, Mater. Des., 2017, 114, 65–72. doi: 10.1016/j.matdes.2016.10.047
72. J. Tan, J. Hao, Z. An and C. Liu, Simple fabrication of superhydrophobic nickel surface on steel substrate via electrodeposition, Int. J. Electrochem. Sci., 2017, 12, no. 1, 40–49, doi: 10.20964/2017.01.15
73. H. Gao, S. Lu, W. Xu, S. Szunerits and R. Boukherroub, Controllable fabrication of stable superhydrophobic surfaces on iron substrates, RSC Adv., 2015, 5, no. 51, 40657– 40667. doi: 10.1039/c5ra02890f
74. A.B.D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40, 546–551. doi: 10.1039/TF9444000546
75. Yu.I. Kuznetsov and G.V. Redkina, Thin protective coatings on metals formed by organic corrosion inhibitors in neutral media, Coatings, 2022, 12, no. 2, 149. doi: 10.3390/coatings12020149
76. T. Liu, S. Chen, S. Cheng, J. Tian, X. Chang and Y. Yin, Corrosion behavior of superhydrophobic surface on copper in seawater, Electrochim. Acta, 2007, 52, no. 28, 8003– 8007. doi: 10.1016/j.electacta.2007.06.072
77. S. Chen, Y. Chen, Y. Lei and Y. Yin, Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces, Electrochem. Communications, 2009, 11, no. 8, 1675–1679. doi: 10.1016/j.elecom.2009.06.021
78. Z. Chen, L. Hao, A. Chen, Q. Song and C. Chen, A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method, Electrochim. Acta, 2012, 59, 168–171. doi: 10.1016/j.electacta.2011.10.045
79. Л.Е. Цыганкова, А.А. Урядников, А.В. Дорохов, Н.В. Шель, А.Н. Дорохова и Н.А. Курьято, Защитные свойства супергидрофобных покрытий на меди и стали, полученных электрохимическим методом, Практика противокоррозионной защиты, 2021, 26, № 1, 7–16. doi: 10.31615/j.corros.prot.2021.99.1-1
80. P. Wang, D. Zhang, R. Qiu and J. Wu, Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium, Cor. Sci., 2014, 83, 317–326. doi: 10.1016/j.corsci.2014.02.028
81. P. Wang, D. Zhang, R. Qiu and J. Wu, Green approach to fabrication of a superhydrophobic film on copper and the consequent corrosion resistance, Cor. Sci., 2014, 80, 366–373. doi: 10.1016/j.corsci.2013.11.055
82. S. Esmailzadeh, S. Khorsand, K. Raeissi and F. Ashrafizadeh, Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films, Surface and Coatings Technology, 2015, 283, 337–346. doi: 10.1016/j.surfcoat.2015.11.005
83. S. Khorsand, K. Raeissi, F. Ashrafizadeh and M.A. Arenas, Super-hydrophobic nickel– cobalt alloy coating with micro-nano flower-like structure, Chem. Eng. J., 2015, 273, 638–646. doi: 10.1016/j.cej.2015.03.076
84. J. Long, M. Zhong, H. Zhang and P. Fan, Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air, J. Colloid Interface Sci., 2015, 441, 1–9. doi: 10.1016/j.jcis.2014.11.015
85. P. Liu, L. Cao, W. Zhao, Y. Xia, W. Huang and Z. Li, Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons, Appl. Surf. Sci., 2015, 324, 576–583. doi: 10.1016/j.apsusc.2014.10.170
86. L.B. Boinovich, A.M. Emelyanenko, A.S. Pashinin, C.H. Lee, J. Drelich and Y.K. Yap, Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings, Langmuir, 2012, 28, no. 2, 1206–1216. doi: 10.1021/la204429z
87. S. Khorsand, K. Raeissi, F. Ashrafizadeh, M.A. Arenas and A. Conde, Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy films, Appl. Surf. Sci., 2016, 364, 349–357. doi: 10.1016/j.apsusc.2015.12.122
88. M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh and S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surface and Coatings Technology, 2015, 283, 318–328. doi: 10.1016/j.surfcoat.2015.11.008
89. В.Г. Глухов, И.Г. Ботрякова и Н.А. Поляков, Влияние условий электролиза и компонентов электролита на свойства супергидрофобных покрытий на основе меди, Успехи в химии и химической технологии, 2021, 35, № 5, 72–73.
90. В.Н. Кузьмин, В.Ф. Федоренко и С.Н. Сазонов, Справочник фермера, Москва, Росинформагротех, 2013, 616 с.
91. P. Wang, D. Zhang, R. Qiu, J. Wu and Y. Wan, Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere, Cor. Sci., 2013, 69, 23– 30. doi: 10.1016/j.corsci.2012.10.025
92. B. Zhang, S. Lu, W. Xu and Y. Cheng, Controllable wettability and morphology of electrodeposited surfaces of zinc substrates, Appl. Surf. Sci., 2016, 360, 904–914. doi: 10.1016/j.apsusc.2015.11.083
93. P. Colson, A. Schrijnemakers, B. Vertruyen, C. Henrist and R. Cloots, Nanosphere lithography and hydrothermal growth: how to increase the surface area and control reversible wetting properties of ZnO nanowire arrays? J. Mater. Chem., 2012, 22, no. 33, 17086–17093. doi: 10.1039/C2JM33533F
94. T.-T. Kao and Y.-Y. Chiu, Fabrication and wetting characteristics of vertically selfaligned ZnO nanorods formed by anodic aluminum oxide template, J. Micro/Nanolithogr. MEMS MOEMS, 2014, 13, no. 1, 013003. doi: 10.1117/1.jmm.13.1.013003
95. B.-R. Huang and J.-C. Lin, A facile synthesis of ZnO nanotubes and their hydrogen sensing properties, Appl. Surf. Sci., 2013, 280, 945–949. doi: 10.1016/j.apsusc.2013.05.112
96. J. Elias, I. Utke, S. Yoon, M. Bechelany, A. Weidenkaff, J. Michler and L. Philippe, Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates, Electrochim. Acta, 2013, 110, 387–392. doi: 10.1016/j.electacta.2013.04.168
97. S. Patra, S. Sarkar, S.K. Bera, G.K. Paul and R. Ghosh, Influence of surface topography and chemical structure on wettability of electrodeposited ZnO thin films, J. Appl. Phys., 2010, 108, no. 8, 083507. doi: 10.1063/1.3493735
98. H. Liu, L. Feng, J. Zhai, L. Jiang and D. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 2004, 20, no. 14, 5659–5661. doi: 10.1021/la036280o
99. M. Gong, X. Xu, Z. Yang, Y. Liu, H. Lv and L. Liu, Structure, photoluminescence and wettability properties of well arrayed ZnO nanowires grown by hydrothermal method, J. Nanosci. Nanotechnol., 2010, 10, no. 11, 7762–7765. doi: 10.1166/jnn.2010.2856
100. R. Jain and R. Pitchumani, Fabrication and characterization of zinc-based superhydrophobic coatings, Surf. Coat. Technol., 2018, 337, 223–231. doi: 10.1016/j.surfcoat.2018.01.014
101. C. Hu, X. Xie, H. Zheng, Y. Qing and K. Ren, Facile fabrication of superhydrophobic zinc coatings with corrosion resistance by electrodeposition process, New J. Chem., 2020, 44, no. 21, 8890–8901. doi: 10.1039/D0NJ00561D
102. С.В. Гнеденков, В.С. Егоркин, С.Л. Синебрюхов и И.Е. Вялый, Супергидрофобные защитные покрытия на поверхности магниевого сплава, Вестник ДВО РАН, 2014, № 2, 522–61.
103. Y. Huang, D.K. Sarkar and X.G. Chen, Superhydrophobic aluminum alloy surfaces prepared by chemicaletching process and their corrosion resistance properties, Appl. Surf. Sci., 2015, 356, 1012–1024. doi: 10.1016/j.apsusc.2015.08.166
104. D. Zang, R. Zhu, W. Zhang, J. Wu, X. Yu and Y. Zhang, Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance, Cor. Sci., 2014, 83, 86–93 doi: 10.1016/j.corsci.2014.02.003
105. T. He, Y. Wang, Y. Zhang, Q. lv, T. Xu and T. Liu, Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater, Cor. Sci., 2009, 51, no. 8, 1757–1761. doi: 10.1016/j.corsci.2009.04.027
106. A.M. Semiletov, А.А. Chirkunov and Yu.I. Kuznetsov, Protection of aluminum alloy AD31 from corrosion by adsorption layers of trialkoxysilanes and stearic acid, Mater. Corros., 2020, 71, no. 1, 77–85. doi: 10.1002/maco.201911000
107. A.M. Semiletov and Yu.I. Kuznetsov, Surface modification of aluminum alloy 6063 with trialkoxysilane solutions, Int. J. Corros. Scale Inhib., 2022, 11, no. 1, 293–306. doi: 10.17675/2305-6894-2022-11-1-17
108. Q. Wang, B. Zhang, M. Qu, J. Zhang and D. He, Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid, Appl. Surf. Sci., 2008, 254, no. 7, 2009–2012, doi: 10.1016/j.apsusc.2007.08.039
109. J. Wang, D. Li, Q. Liu, X. Yin, Y. Zhang, X. Jing and M. Zhang, Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance, Electrochim. Acta, 2010, 55, no. 22, 6897–6906. doi: 10.1016/j.electacta.2010.05.070
110. T. Ishizaki, J. Hied, N. Saito, N. Saito and O. Takai, Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition, Electrochim. Acta, 2010, 55, no. 23, 7094– 7101. doi: 10.1016/j.electacta.2010.06.064
111. B. Yin, L. Fang, J. Hu, A.-Q. Tang, W.-H. Wei and J. He, Preparation and properties of super-hydrophobic coating on magnesium alloy, Appl. Surf. Sci., 2010, 257, no. 5, 1666– 1671. doi: 10.1016/j.apsusc.2010.08.119
112. D. Lv, J. Ou, M. Xue and F. Wang, Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution, Appl. Surf. Sci., 2015, 333, 163–169. doi: 10.1016/j.apsusc.2015.02.012
113. L.B. Boinovich, E.B. Modin, A.R. Sayfutdinova, K.A. Emelyanenko, A.L. Vasiliev and A.M. Emelyanenko, Combination of functional nanoengineering and nanosecond laser texturing for design of superhydrophobic aluminum alloy with exceptional mechanical and chemical properties, ACS Nano, 2017, 11, 10113–10123. doi: 10.1021/acsnano.7b04634
114. A. Marmur, C. Della Volpe, S. Siboni, A. Amirfazli and J.W. Drelich, Contact angles and wettability: towards common and accurate terminology, Surface Innovations, 2017, 5, no. 1, 3–8. doi: 10.1680/jsuin.17.00002
115. M. Vigdorowitsch, L.E. Tsygankova, V.V. Ostrikov and L.D. Rodionova, Beyond the Wenzel and Cassie-Baxter world: Mathematical insight into contact angles, Math Meth Appl Sci., 2022, 45, no. 17, 1–19. doi: 10.1002/mma.8462
116. C.W. Extrand, Contact angles and hysteresis on surfaces with chemically heterogeneous islands, Langmuir, 2003, 19, no. 9, 3793–3796. doi: 10.1021/la0268350
117. L. Gao and T.J. McCarthy, How Wenzel and Cassie were wrong, Langmuir, 2007, 23, no. 7, 3762–3765. doi: 10.1021/la062634a
118. E. Bormashenko, A variational approach to wetting of composite surfaces: Is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon? Langmuir, 2009, 25, no. 18, 10451–10454. doi: 10.1021/la902458t
119. H.Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review, Surface Science Reports, 2014, 69, no. 4, 325–365. doi: 10.1016/j.surfrep.2014.09.001
120. J.W. Drelich, L. Boinovich, E. Chibowski, C.D. Volpe, L. Hołysz, A. Marmur and S. Siboni, Contact angles: history of over 200 years of open questions, Surface Innovations, 2020, 8, nos. 1–2, 3–27. doi: 10.1680/jsuin.19.00007
121. R. Finn, M. Shinbrot and F. Milinazzo, The capillary contact angle, II: The inclined plane, Math Meth Appl Sci., 1988, 10, no. 2, 165–196. doi: 10.1002/mma.1670100206
122. R. Tadmor, Open problems in wetting phenomena: pinning retention forces, Langmuir, 2021, 37, 6357−6372. doi: 10.1021/acs.langmuir.0c02768
123. J. De Coninck, F. Dunlop and T. Huillet, Contact angles of a drop pinned on an incline, Phys. Rev. E, 2017, 95, 052805. doi: 10.1103/PhysRevE.95.052805
124. M. Kumar, R. Bhardwaj and K.C. Sahu, Motion of a droplet on an anisotropic microgrooved surface, Langmuir, 2019, 35, no. 8, 2957–2965. doi: 10.1021/acs.langmuir.8b03604
125. P. Katre, S. Balusamy, S. Banerjee and K.C. Sahu, An experimental investigation of evaporation of ethanol–water droplets laden with alumina nanoparticles on a critically inclined heated substrate, Langmuir, 2022, 38, no. 15, 4722–4735. doi: 10.1021/acs.langmuir.2c00306
126. T. Huhtamäki, X. Tian, J.T. Korhonen and R.H.A. Ras, Surface wetting characterization using contact-angle measurements, Nature Protocols, 2018, 13, 1521–1538. doi: 10.1038/s41596-018-0003-z
Рецензия
Для цитирования:
Цыганкова Л.Е., Вигдорович М.В. Антикоррозионная эффективность супергидрофобных покрытий на металлах. Обзор. Коррозия: защита материалов и методы исследований. 2025;(1):1-60. https://doi.org/10.61852/2949-3412-2024-3-1-1-60
For citation:
Tsygankova L.E., Vigdorowitsch M.V. Anti-corrosion effectiveness of superhydrophobic coatings on metals. Overview. Title in english. 2025;(1):1-60. (In Russ.) https://doi.org/10.61852/2949-3412-2024-3-1-1-60