Влияние имидазолатного каркаса ZIF-8 на ингибирующий эффект аспартатов при атмосферной коррозии низкоуглеродистой стали
https://doi.org/10.61852/2949-3412-2025-3-1-137-163
Аннотация
Цель данного исследования – разработка нового нанокомпозитного летучего ингибитора коррозии (ZIF-AD) низкоуглеродистой стали за счет реакции между аспарагиновой кислотой и ди-н-бутиламином (AD) на цеолитном имидазолатном каркасе (zeolitic imidazolate framework-8, ZIF-8). Пористая структура ZIF-8 способствует распределению молекул аспарагиновой кислоты, уменьшая их агломерацию и повышая летучесть. Ингибирующее действие ZIF-AD в условиях окружающей среды достигается благодаря летучести этого соединения и его способности к адсорбции. Показано, что при использовании ингибитора на поверхности стали образуется защитная пленка, эффективно подавляющая катодную реакцию. Полученные результаты показывают, что ZIF-AD может потенциально использоваться в качестве высокоэффективного ингибитора коррозии низкоуглеродистой стали в атмосферных условиях.
Ключевые слова
Об авторах
Хайни ЯнКитай
Шанхай 201306
Лян Ма
Китай
Шанхай 201306
Дацюань Чжан
Китай
Шанхай 201306
Сифэй Ань
Китай
Шанхай 201306
Чжэньи Цуй
Китай
Шанхай 201306
Н. Н. Андреев
Россия
19071, Москва, Ленинский проспект, д.31, корп. 4
Список литературы
1. E. Vuorinen, P. Ngobeni, G.H. Van der Klashorst, W. Skinner, E. de Wet and W.S. Ernst, Derivatives of cyclobexylamine and morpholine as volatile corrosion inbibitors, Br. Corros. J., 1994; 29, no 2, 120–121. doi: 10.1179/000705994798267845
2. D.M. Bastidas, E. Cano and E.M. Mora, Volatile corrosion inhibitors: a review, AntiCorros. Methods Mater., 2005, 52, no 2, 71–77. doi: 10.1108/00035590510584771
3. Q. Wang, H. Zhang, D.Q. Zhang, H. Zheng and L. Gao, Complex films formed on Al alloy surface via vapor phase assembly of benzotriazole and dodecyltrimethoxysilane, Anti-Corros. Methods Mater., 2023, 70, no 4, 182–188. doi: 10.1108/ACMM-03-2023-2772
4. O.A. Goncharova, A.Yu. Luchkin, Yu.I. Kuznetsov and N.N. Andreev, Vapor-phase protection of zinc from atmospheric corrosion by low-volatile corrosion inhibitors, Prot. Met. Phys. Chem. Surf., 2019, 55, no 7, 1299–1303. doi: 10.1134/S2070205119070062
5. H. Ju, X. Li, N. Cao, F. Wang, Y. Liu and Y. Li, Schiff-base derivatives as corrosion inhibitors for carbon steel materials in acid media: quantum chemical calculations, Corros Eng. Sci. Technol., 2018, 53, no 1, 36–43. doi: 10.1080/1478422X.2017.1368216
6. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Salinas, Technological applications of volatile corrosion inhibitors, Corros. Rev., 2018, 36, no 3, 227–238. doi: 10.1515/corrrev-2017-0102
7. S. Gangopadhyay and P.A. Mahanwar, Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review, J. Coat. Technol. Res., 2018, 15, no 4, 789–807. doi: 10.1007/s11998-017-0015-6
8. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Salinas, Technological applications of volatile corrosion inhibitors, Corros. Rev., 2018, 36, no 3, 227–238. doi: 10.1515/corrrev-2017-0102
9. N. Poongothai, P. Rajendran, M. Natesan and N. Palaniswamy, Wood bark oils as vapour phase corrosion inhibitors for metals in NaCl and SO2 environments, Indian J Chem. Technol., 2005, 12, no 6, 641–647.
10. O.E. Chyhyrynets’ and V.I. Vorob’iova, Anticorrosion properties of the extract of rapeseed oil cake as a volatile inhibitor of the atmospheric corrosion of steel, Mater. Sci., 2013, 49, no 3, 318–325. doi: 10.1007/s11003-013-9617-z
11. X. Zhao, J. Zhang, L. Ma, W. Wang and M.Zhang, Study on the performance and mechanism of morpholine salt volatile corrosion inhibitors on carbon steel, Coatings, 2024, 14, no 8, 997. doi: 10.3390/coatings14080997
12. X. Cheng, H. Ye, C. Guo, L. Pan and L.X. Lu, Molecular dynamics simulation of the effects of intermolecular interactions on the diffusion mechanism of 1,2,3- benzotriazole in low density polyethylene, J. Polym. Res., 2024, 31, no 4, 1–14. doi: 10.1007/s10965-024-03961-1
13. D. Costa, C.M. Pradier, F. Tielens and L. Savio, Adsorption and self-assembly of bioorganic molecules at model surfaces: A route towards increased complexity, Surf. Sci. Rep., 2015, 70, no 4, 449–553. doi: 10.1016/j.surfrep.2015.10.002
14. G. Gece and S. Bilgiç, A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel, Corros. Sci., 2010, 52, no 10, 3435–3443. doi: 10.1016/j.corsci.2010.06.015
15. B. El Ibrahimi, A. Jmiai, L. Bazzi and S. El Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, Arab. J. Chem., 2020, 13, no 1, 740–771. doi: 10.1016/j.arabjc.2017.07.013
16. M. Yadav, D. Behera and U. Sharma, Corrosion protection of N80 steel in hydrochloric acid by substituted amino acids, Corros. Eng. Sci. Technol., 2013, 48, no 1, 19–27. doi: 10.1179/1743278212Y.0000000047
17. G.L.F. Mendonça, S.N. Costa, V.N. Freire, P.N.S. Casciano, A.N. Correia and P.de Lima-Neto, Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods, Corros. Sci., 2017, 115, 41–55. doi:10.1016/j.corsci.2016.11.012
18. J. Chen, L. Fang, F. Wu, J. Xie, J. Hu, B. Jiang and H. Luo, Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy, Prog. Org. Coat., 2019, 136, 105234. doi: 10.1016/j.porgcoat.2019.105234
19. Y. Li, S. Gong, R. Zhang, X. Liu, S. Wang, X. Zhang and C. Song, Synergistic inhibition of polyaspartic acid and D-glutamic acid on carbon steel corrosion in acidic environments, Journal of Water Process Engineering, 2024, 64, 105601. doi: 10.1016/j.jwpe.2024.105601
20. C. Verma, A.H. Al-Moubaraki, A. Alfantazi and K.Y. Rhee, Heterocyclic amino acidsbased green and sustainable corrosion inhibitors: Adsorption, bonding and corrosion control, J. Cleaner Prod., 2024, 446, 141186. doi: 10.1016/j.jclepro.2024.141186
21. V. Štejfa, V. Pokorný, C.F.P. Miranda, Ó.O.P. Fernandes and L.M.N.B.F. Santos, Volatility study of amino acids by knudsen effusion with QCM mass loss detection, ChemPhysChem, 2020, 21, no 9, 938–951. doi: 10.1002/cphc.202000078
22. Q. Wang, L. Ma, J. An, D. Zhang, W. Li and L. Gao, Vapour phase assembly of ultrathin coatings from alanine ternary complex on the carbon steel surface with enhanced corrosion resistance, Corros. Eng. Sci. Technol., 2023, 58, no 7, 614–622. doi: 10.1080/1478422X.2023.2243736
23. L.R.M. Estevao and R.S.V. Nascimento, Modifications in the volatilization rate of volatile corrosion inhibitors by means of host-guest systems, Corros. Sci., 2001, 43, 1133–1153. doi: 10.1016/S0010-938X(00)00106-2
24. L. Ma, H. Yang, D. Zhang, H. Yang and W. Wu, Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation, Corros. Sci., 2024, 226, 111639. doi: 10.1016/j.corsci.2023.111639
25. C. Zhang, H. Yang, D. Zhong, Y. Xu, Y. Wang, Q. Yuan, Z. Liang, B. Wang, W. Zhang, H. Zheng, T. Cheng and R. Cao, A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction, J. Mater. Chem. A, 2020, 8, no 19, 9536–9544. doi: 10.1039/D0TA00962H
26. W.-C. Lee, H.-T. Chien, Y. Lo, H.-C. Chiu, T.-P. Wang and D.-Y. Kang, Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs, ACS Appl. Mater. Interfaces, 2005, 7, no 33, 18353–18361. doi: 10.1021/acsami.5b04217
27. H. Furukawa, K.E. Cordova, M.O’ Keeffe and O.M. Yaghi, The Chemistry and applications of metal-organic frameworks, Science, 2013, 341, no 6149, 1230444. doi: 10.1126/science.1230444
28. D. Yan, X. Liu, Z. Chen, M. Zhang, T. Zhang and J. Wang, A double-layered selfhealing coating system based on the synergistic strategy of cysteine and iron polyacrylate for corrosion protection, Chem. Eng. J., 2023, 451, no 5, 138995. doi: 10.1016/j.cej.2022.138995
29. K. Wei, Y. Wei, Y. Zhang, V. Kasneryk, M. Serdechnova, H. Wang, Z. Zhang, Y. Yuan, C. Blawert, M. Zheludkevich and F. Chen, In Situ synthesis of ZIF-8 loaded with 8-hydroxyquinoline composite via a host-guest nanoconfinement strategy for high-performance corrosion protection, Corros. Sci., 2024, 227, 111731. doi: 10.1016/j.corsci.2023.111731
30. S. Yang, J. Wang, W. Mao, D. Zhang, Y. Guo, Y. Song, J-P. Wang, T. Qi and G.L. Li, pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings, Colloid Surf. A., 2018, 555, 18–26. doi: 10.1016/j.colsurfa.2018.06.035
31. .C. Yang, W. Xu, X. Meng, X. Shi, L. Shao, X. Zeng, Z. Yang, S. Li, Y. Liu and X. Xia, A pH-responsive hydrophilic controlled release system based on ZIF-8 for selfhealing anticorrosion application, Chem. Eng. J., 2021, 415, 128985. doi: 10.1016/j.cej.2021.128985
32. Y. Zhao, F. Jiang, Y.-Q. Chen and J.-M. Hu, Coatings embedded with GO/MOFs nanocontainers having both active and passive protecting properties, Corros. Sci., 2020, 168, 108563. doi: 10.1016/j.corsci.2020.108563
33. M.J. Wang, Z.X. Mao, L. Liu, L. Peng, N. Yang, J. Deng, W. Ding, J. Li and Z. Wei, Preparation of hollow nitrogen doped carbon via stresses induced qrientation contraction, Small, 2018, 14, no 52, 1804183. doi: 10.1002/smll.201804183
34. G. Gao and C.H. Liang, 1,3-Bis-diethylamino-propan-2-ol as volatile corrosion inhibitor for brass, Corros. Sci., 2007, 49, no 9, 3479–3493. doi: 10.1016/j.corsci.2007.03.030
35. P. Gan, D. Zhang, L. Gao, Z. Xin and X. Li, Inhibitive effect of anionic/zwitterionic hybrid surfactants on the self-corrosion of anode for alkaline Al-air battery, Colloids Surf. A., 2023, 670, 131530. doi: 10.1016/j.colsurfa.2023.131530
36. J. Imanipoor, A. Ghafelebashi, M. Mohammadi and M. Dinari, Fast and effective adsorption of amoxicillin from aqueous solutions by L-methionine modified montmorillonite K10, Colloids Surf. A., 2021, 611, 125792. doi: 10.1016/j.colsurfa.2020.125792
37. R. Aslam, M. Mobin, Huda, I.B. Obot and A.H. Alamri, Ionic liquids derived from α- amino acid ester salts as potent green corrosion inhibitors for mild steel in 1M HCl, J. Mol. Liq., 2020, 318, 113982. doi: 10.1016/j.molliq.2020.113982
38. F. Demir, B. Demir, E.E. Yalcinkaya, S. Cevik, D.O. Demirkol, U. Anikc and S. Timur, Amino acid intercalated montmorillonite: electrochemical biosensing applications, RSC Adv., 2014, 4, no 91, 50107–50113. doi: 10.1039/C4RA07026G
39. X.Q. Zeng, Z.N. Jiang, J.M. Duan, Y.R. Li, S.Y. Peng, C.F. Dong and G.A. Zhang, Developing a novel amino acid derivative as high-efficient green corrosion inhibitor for mild steel in acidic solution: Experiments and first-principles calculations, Ind. Crops Prod., 2024, 210, 118032. doi: 10.1016/j.indcrop.2024.118032
40. C.M. Deng, D.H. Xia, R. Zhang, Y. Behnamian and N. Birbilis, On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface – Part 2: Effects of wetting time, Corros. Sci., 2023, 221, 111367. doi: 10.1016/j.corsci.2023.111367
41. Y. Ji, Q. Hu, D.H. Xia, R. Zhanga and J.L. Luo, Corrosion susceptibility of passive films on 1060, 2024, and 5083 aluminum alloys: experimental study and firstprinciples calculations, J. Electrochem. Soc., 2023, 170, no 4, 041505. doi: 10.1149/1945-7111/accab8
42. B. Hirschorna, M.E. Orazema, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 2010, 55, no 21, 6218–6227. doi: 10.1016/j.electacta.2009.10.065
43. A. Barroux, J. Delgado, M.E. Orazem, B. Tribollet, L. Laffont and C. Blanc, Electrochemical impedance spectroscopy study of the passive film for laser-beammelted 17-4PH stainless steel, Corros. Sci., 2021, 191, 109750. doi: 10.1016/j.corsci.2021.109750
44. N. Srisuwan, N. Ochoa, N. Pébère and B. Tribollet, Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation, Corros. Sci., 2008, 50, no 5, 1245–1250. doi: 10.1016/j.corsci.2008.01.029
45. Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu and X. Li, Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates, Corros. Sci., 2017, 118, 31–48. doi:10.1016/j.corsci.2017.01.016
46. G.K. Shamnamol, J. Sam and J.M. Jacob, Experimental and theoretical evidence for effective corrosion mitigation in mild steel using novel Garcinia gummi-gutta leaf extract, Anti-Corros Methods Mater., 2022, 69, no 5, 540–549. doi: 10.1108/ACMM-03-2022-2630
47. J. Haque, V. Srivastava, D.S. Chauhan, H. Lgaz and M.A. Quraishi, MicrowaveInduced Synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach, ACS Omega, 2018, 3, no 5, 5654–5668. doi: 10.1021/acsomega.8b00455
48. D. quan Zhang, Z. xun An, Q. yi Pan, Li-xin Gao and G.-ding Zhou, Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel, Corros. Sci., 2006, 48, no 6, 1437–1448. doi: 10.1016/j.corsci.2005.06.007
49. K. Zhang, W. Yang, B. Xu, X. Yin, Y. Chen and Y. Liu, Green synthesis of novel schiff bases as eco-friendly corrosion inhibitors for Mild Steel in Hydrochloric Acid, ChemistrySelect, 2018, 3, no 44, 12486–12494. doi: 10.1002/slct.201802915
50. L. Wang, H. Wang, A. Seyeux, S. Zanna, A. Pailleret, S. Nesic and P. Marcus, Adsorption mechanism of quaternary ammonium corrosion inhibitor on carbon steel surface using ToF-SIMS and XPS, Corros. Sci., 2023, 213, 110952. doi: 10.1016/j.corsci.2022.110952
Рецензия
Для цитирования:
Ян Х., Ма Л., Чжан Д., Ань С., Цуй Ч., Андреев Н.Н. Влияние имидазолатного каркаса ZIF-8 на ингибирующий эффект аспартатов при атмосферной коррозии низкоуглеродистой стали. Коррозия: защита материалов и методы исследований. 2025;(1):137-163. https://doi.org/10.61852/2949-3412-2025-3-1-137-163
For citation:
Yang H., Ma L., Zhang D., An S., Cui Z., Andreev N.N. Influence of ZIF-8 on the inhibition effect of aspartates for atmospheric corrosion of mild steel. Title in english. 2025;(1):137-163. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-1-137-163