Preview

Title in english

Advanced search

Influence of ZIF-8 on the inhibition effect of aspartates for atmospheric corrosion of mild steel

https://doi.org/10.61852/2949-3412-2025-3-1-137-163

Abstract

This study aims to develop a novel volatile corrosion inhibitor for mild steel by preparing a nanocomposite (ZIF-AD) through a salt-forming reaction between aspartic acid (AD) and din-butylamine, with zeolitic imidazolate framework-8 (ZIF-8) as the template material. The ZIF-8's porous structure is beneficial to disperse AD molecules, reducing agglomeration and enhancing volatility. Under ambient atmosphere, ZIF-AD achieves corrosion inhibition properties through volatilization and adsorption. It demonstrates that a protective film is formed on mild steel surfaces, effectively inhibiting the cathodic process of corrosion. Compared to AD alone, the incorporation of ZIF-8 increased the inhibition efficiency to 91%. These findings highlight the potential of ZIF-AD as a highly efficient corrosion inhibitor for mild steel in atmospheric environments.

About the Authors

H. Yang
Шанхайский университет электроэнергетики
China


L. Ma
Шанхайский университет электроэнергетики
China


D. Zhang
Шанхайский университет электроэнергетики
China


S. An
Шанхайский университет электроэнергетики
China


Z. Cui
Шанхайский университет электроэнергетики
China


N. N. Andreev
ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН)
Russian Federation


References

1. E. Vuorinen, P. Ngobeni, G.H. Van der Klashorst, W. Skinner, E. de Wet and W.S. Ernst, Derivatives of cyclobexylamine and morpholine as volatile corrosion inbibitors, Br. Corros. J., 1994; 29, no 2, 120–121. doi: 10.1179/000705994798267845

2. D.M. Bastidas, E. Cano and E.M. Mora, Volatile corrosion inhibitors: a review, AntiCorros. Methods Mater., 2005, 52, no 2, 71–77. doi: 10.1108/00035590510584771

3. Q. Wang, H. Zhang, D.Q. Zhang, H. Zheng and L. Gao, Complex films formed on Al alloy surface via vapor phase assembly of benzotriazole and dodecyltrimethoxysilane, Anti-Corros. Methods Mater., 2023, 70, no 4, 182–188. doi: 10.1108/ACMM-03-2023-2772

4. O.A. Goncharova, A.Yu. Luchkin, Yu.I. Kuznetsov and N.N. Andreev, Vapor-phase protection of zinc from atmospheric corrosion by low-volatile corrosion inhibitors, Prot. Met. Phys. Chem. Surf., 2019, 55, no 7, 1299–1303. doi: 10.1134/S2070205119070062

5. H. Ju, X. Li, N. Cao, F. Wang, Y. Liu and Y. Li, Schiff-base derivatives as corrosion inhibitors for carbon steel materials in acid media: quantum chemical calculations, Corros Eng. Sci. Technol., 2018, 53, no 1, 36–43. doi: 10.1080/1478422X.2017.1368216

6. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Salinas, Technological applications of volatile corrosion inhibitors, Corros. Rev., 2018, 36, no 3, 227–238. doi: 10.1515/corrrev-2017-0102

7. S. Gangopadhyay and P.A. Mahanwar, Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review, J. Coat. Technol. Res., 2018, 15, no 4, 789–807. doi: 10.1007/s11998-017-0015-6

8. B. Valdez, M. Schorr, N. Cheng, E. Beltran and R. Salinas, Technological applications of volatile corrosion inhibitors, Corros. Rev., 2018, 36, no 3, 227–238. doi: 10.1515/corrrev-2017-0102

9. N. Poongothai, P. Rajendran, M. Natesan and N. Palaniswamy, Wood bark oils as vapour phase corrosion inhibitors for metals in NaCl and SO2 environments, Indian J Chem. Technol., 2005, 12, no 6, 641–647.

10. O.E. Chyhyrynets’ and V.I. Vorob’iova, Anticorrosion properties of the extract of rapeseed oil cake as a volatile inhibitor of the atmospheric corrosion of steel, Mater. Sci., 2013, 49, no 3, 318–325. doi: 10.1007/s11003-013-9617-z

11. X. Zhao, J. Zhang, L. Ma, W. Wang and M.Zhang, Study on the performance and mechanism of morpholine salt volatile corrosion inhibitors on carbon steel, Coatings, 2024, 14, no 8, 997. doi: 10.3390/coatings14080997

12. X. Cheng, H. Ye, C. Guo, L. Pan and L.X. Lu, Molecular dynamics simulation of the effects of intermolecular interactions on the diffusion mechanism of 1,2,3- benzotriazole in low density polyethylene, J. Polym. Res., 2024, 31, no 4, 1–14. doi: 10.1007/s10965-024-03961-1

13. D. Costa, C.M. Pradier, F. Tielens and L. Savio, Adsorption and self-assembly of bioorganic molecules at model surfaces: A route towards increased complexity, Surf. Sci. Rep., 2015, 70, no 4, 449–553. doi: 10.1016/j.surfrep.2015.10.002

14. G. Gece and S. Bilgiç, A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel, Corros. Sci., 2010, 52, no 10, 3435–3443. doi: 10.1016/j.corsci.2010.06.015

15. B. El Ibrahimi, A. Jmiai, L. Bazzi and S. El Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, Arab. J. Chem., 2020, 13, no 1, 740–771. doi: 10.1016/j.arabjc.2017.07.013

16. M. Yadav, D. Behera and U. Sharma, Corrosion protection of N80 steel in hydrochloric acid by substituted amino acids, Corros. Eng. Sci. Technol., 2013, 48, no 1, 19–27. doi: 10.1179/1743278212Y.0000000047

17. G.L.F. Mendonça, S.N. Costa, V.N. Freire, P.N.S. Casciano, A.N. Correia and P.de Lima-Neto, Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods, Corros. Sci., 2017, 115, 41–55. doi:10.1016/j.corsci.2016.11.012

18. J. Chen, L. Fang, F. Wu, J. Xie, J. Hu, B. Jiang and H. Luo, Corrosion resistance of a self-healing rose-like MgAl-LDH coating intercalated with aspartic acid on AZ31 Mg alloy, Prog. Org. Coat., 2019, 136, 105234. doi: 10.1016/j.porgcoat.2019.105234

19. Y. Li, S. Gong, R. Zhang, X. Liu, S. Wang, X. Zhang and C. Song, Synergistic inhibition of polyaspartic acid and D-glutamic acid on carbon steel corrosion in acidic environments, Journal of Water Process Engineering, 2024, 64, 105601. doi: 10.1016/j.jwpe.2024.105601

20. C. Verma, A.H. Al-Moubaraki, A. Alfantazi and K.Y. Rhee, Heterocyclic amino acidsbased green and sustainable corrosion inhibitors: Adsorption, bonding and corrosion control, J. Cleaner Prod., 2024, 446, 141186. doi: 10.1016/j.jclepro.2024.141186

21. V. Štejfa, V. Pokorný, C.F.P. Miranda, Ó.O.P. Fernandes and L.M.N.B.F. Santos, Volatility study of amino acids by knudsen effusion with QCM mass loss detection, ChemPhysChem, 2020, 21, no 9, 938–951. doi: 10.1002/cphc.202000078

22. Q. Wang, L. Ma, J. An, D. Zhang, W. Li and L. Gao, Vapour phase assembly of ultrathin coatings from alanine ternary complex on the carbon steel surface with enhanced corrosion resistance, Corros. Eng. Sci. Technol., 2023, 58, no 7, 614–622. doi: 10.1080/1478422X.2023.2243736

23. L.R.M. Estevao and R.S.V. Nascimento, Modifications in the volatilization rate of volatile corrosion inhibitors by means of host-guest systems, Corros. Sci., 2001, 43, 1133–1153. doi: 10.1016/S0010-938X(00)00106-2

24. L. Ma, H. Yang, D. Zhang, H. Yang and W. Wu, Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation, Corros. Sci., 2024, 226, 111639. doi: 10.1016/j.corsci.2023.111639

25. C. Zhang, H. Yang, D. Zhong, Y. Xu, Y. Wang, Q. Yuan, Z. Liang, B. Wang, W. Zhang, H. Zheng, T. Cheng and R. Cao, A yolk–shell structured metal–organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction, J. Mater. Chem. A, 2020, 8, no 19, 9536–9544. doi: 10.1039/D0TA00962H

26. W.-C. Lee, H.-T. Chien, Y. Lo, H.-C. Chiu, T.-P. Wang and D.-Y. Kang, Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs, ACS Appl. Mater. Interfaces, 2005, 7, no 33, 18353–18361. doi: 10.1021/acsami.5b04217

27. H. Furukawa, K.E. Cordova, M.O’ Keeffe and O.M. Yaghi, The Chemistry and applications of metal-organic frameworks, Science, 2013, 341, no 6149, 1230444. doi: 10.1126/science.1230444

28. D. Yan, X. Liu, Z. Chen, M. Zhang, T. Zhang and J. Wang, A double-layered selfhealing coating system based on the synergistic strategy of cysteine and iron polyacrylate for corrosion protection, Chem. Eng. J., 2023, 451, no 5, 138995. doi: 10.1016/j.cej.2022.138995

29. K. Wei, Y. Wei, Y. Zhang, V. Kasneryk, M. Serdechnova, H. Wang, Z. Zhang, Y. Yuan, C. Blawert, M. Zheludkevich and F. Chen, In Situ synthesis of ZIF-8 loaded with 8-hydroxyquinoline composite via a host-guest nanoconfinement strategy for high-performance corrosion protection, Corros. Sci., 2024, 227, 111731. doi: 10.1016/j.corsci.2023.111731

30. S. Yang, J. Wang, W. Mao, D. Zhang, Y. Guo, Y. Song, J-P. Wang, T. Qi and G.L. Li, pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings, Colloid Surf. A., 2018, 555, 18–26. doi: 10.1016/j.colsurfa.2018.06.035

31. .C. Yang, W. Xu, X. Meng, X. Shi, L. Shao, X. Zeng, Z. Yang, S. Li, Y. Liu and X. Xia, A pH-responsive hydrophilic controlled release system based on ZIF-8 for selfhealing anticorrosion application, Chem. Eng. J., 2021, 415, 128985. doi: 10.1016/j.cej.2021.128985

32. Y. Zhao, F. Jiang, Y.-Q. Chen and J.-M. Hu, Coatings embedded with GO/MOFs nanocontainers having both active and passive protecting properties, Corros. Sci., 2020, 168, 108563. doi: 10.1016/j.corsci.2020.108563

33. M.J. Wang, Z.X. Mao, L. Liu, L. Peng, N. Yang, J. Deng, W. Ding, J. Li and Z. Wei, Preparation of hollow nitrogen doped carbon via stresses induced qrientation contraction, Small, 2018, 14, no 52, 1804183. doi: 10.1002/smll.201804183

34. G. Gao and C.H. Liang, 1,3-Bis-diethylamino-propan-2-ol as volatile corrosion inhibitor for brass, Corros. Sci., 2007, 49, no 9, 3479–3493. doi: 10.1016/j.corsci.2007.03.030

35. P. Gan, D. Zhang, L. Gao, Z. Xin and X. Li, Inhibitive effect of anionic/zwitterionic hybrid surfactants on the self-corrosion of anode for alkaline Al-air battery, Colloids Surf. A., 2023, 670, 131530. doi: 10.1016/j.colsurfa.2023.131530

36. J. Imanipoor, A. Ghafelebashi, M. Mohammadi and M. Dinari, Fast and effective adsorption of amoxicillin from aqueous solutions by L-methionine modified montmorillonite K10, Colloids Surf. A., 2021, 611, 125792. doi: 10.1016/j.colsurfa.2020.125792

37. R. Aslam, M. Mobin, Huda, I.B. Obot and A.H. Alamri, Ionic liquids derived from α- amino acid ester salts as potent green corrosion inhibitors for mild steel in 1M HCl, J. Mol. Liq., 2020, 318, 113982. doi: 10.1016/j.molliq.2020.113982

38. F. Demir, B. Demir, E.E. Yalcinkaya, S. Cevik, D.O. Demirkol, U. Anikc and S. Timur, Amino acid intercalated montmorillonite: electrochemical biosensing applications, RSC Adv., 2014, 4, no 91, 50107–50113. doi: 10.1039/C4RA07026G

39. X.Q. Zeng, Z.N. Jiang, J.M. Duan, Y.R. Li, S.Y. Peng, C.F. Dong and G.A. Zhang, Developing a novel amino acid derivative as high-efficient green corrosion inhibitor for mild steel in acidic solution: Experiments and first-principles calculations, Ind. Crops Prod., 2024, 210, 118032. doi: 10.1016/j.indcrop.2024.118032

40. C.M. Deng, D.H. Xia, R. Zhang, Y. Behnamian and N. Birbilis, On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface – Part 2: Effects of wetting time, Corros. Sci., 2023, 221, 111367. doi: 10.1016/j.corsci.2023.111367

41. Y. Ji, Q. Hu, D.H. Xia, R. Zhanga and J.L. Luo, Corrosion susceptibility of passive films on 1060, 2024, and 5083 aluminum alloys: experimental study and firstprinciples calculations, J. Electrochem. Soc., 2023, 170, no 4, 041505. doi: 10.1149/1945-7111/accab8

42. B. Hirschorna, M.E. Orazema, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 2010, 55, no 21, 6218–6227. doi: 10.1016/j.electacta.2009.10.065

43. A. Barroux, J. Delgado, M.E. Orazem, B. Tribollet, L. Laffont and C. Blanc, Electrochemical impedance spectroscopy study of the passive film for laser-beammelted 17-4PH stainless steel, Corros. Sci., 2021, 191, 109750. doi: 10.1016/j.corsci.2021.109750

44. N. Srisuwan, N. Ochoa, N. Pébère and B. Tribollet, Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation, Corros. Sci., 2008, 50, no 5, 1245–1250. doi: 10.1016/j.corsci.2008.01.029

45. Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu and X. Li, Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates, Corros. Sci., 2017, 118, 31–48. doi:10.1016/j.corsci.2017.01.016

46. G.K. Shamnamol, J. Sam and J.M. Jacob, Experimental and theoretical evidence for effective corrosion mitigation in mild steel using novel Garcinia gummi-gutta leaf extract, Anti-Corros Methods Mater., 2022, 69, no 5, 540–549. doi: 10.1108/ACMM-03-2022-2630

47. J. Haque, V. Srivastava, D.S. Chauhan, H. Lgaz and M.A. Quraishi, MicrowaveInduced Synthesis of chitosan schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach, ACS Omega, 2018, 3, no 5, 5654–5668. doi: 10.1021/acsomega.8b00455

48. D. quan Zhang, Z. xun An, Q. yi Pan, Li-xin Gao and G.-ding Zhou, Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for mild steel, Corros. Sci., 2006, 48, no 6, 1437–1448. doi: 10.1016/j.corsci.2005.06.007

49. K. Zhang, W. Yang, B. Xu, X. Yin, Y. Chen and Y. Liu, Green synthesis of novel schiff bases as eco-friendly corrosion inhibitors for Mild Steel in Hydrochloric Acid, ChemistrySelect, 2018, 3, no 44, 12486–12494. doi: 10.1002/slct.201802915

50. L. Wang, H. Wang, A. Seyeux, S. Zanna, A. Pailleret, S. Nesic and P. Marcus, Adsorption mechanism of quaternary ammonium corrosion inhibitor on carbon steel surface using ToF-SIMS and XPS, Corros. Sci., 2023, 213, 110952. doi: 10.1016/j.corsci.2022.110952


Review

For citations:


Yang H., Ma L., Zhang D., An S., Cui Z., Andreev N.N. Influence of ZIF-8 on the inhibition effect of aspartates for atmospheric corrosion of mild steel. Title in english. 2025;(1):137-163. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-1-137-163

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.