Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Мигрирующие ингибиторы хлоридной коррозии стальной арматуры в бетоне. Обзор

https://doi.org/10.61852/2949-3412-2025-3-2-1-23

Аннотация

Представлен обзор исследований о мигрирующих ингибиторах коррозии (МИК) для защиты стальной арматуры в бетоне при воздействии хлоридов. Рассмотрены четыре группы МИК: (1) неорганические МИК; (2) органические МИК, в т.ч. электромиграционные ингибиторы коррозии (ЭМИК); (3) смешанные МИК (смесь неорганических и органических МИК); (4) органические МИК с гидрофобными компонентами. Неорганические МИК были изучены одними из первых. Они не получили широкого распространения по причине невысокой проникающей способности, взаимодействия с цементным камнем и возможного негативного влияния на экологию. Органические МИК хорошо изучены и коммерчески доступны, особенно МИК на основе аминов и аминоспиртов. В большинстве случаев такие МИК эффективно снижают скорость коррозии как для новых бетонов, которые не подвергались действию хлоридов до обработки ингибитором, так и для содержащих хлориды конструкций. В единичных исследованиях сообщается также об их незначительной эффективности. Смеси органических и неорганических компонентов в МИК часто обладают синергетическим эффектом, который повышает антикоррозионное          действие. Модификация         органических       МИК гидрофобизирующими компонентами усиливает эффективность за счет дополнительного влияния на бетонное покрытие. В целом, использование МИК представляет собой перспективный и развивающийся подход к продлению срока службы железобетонных конструкций, подверженных воздействию хлоридов.

Об авторах

Н. Л. Као
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Као Ньят Линь

Нячанг



Д. С. Шевцов
Воронежский государственный университет
Россия

Воронеж



В. Ч. Нгуен
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Нгуен Ван Чи

Нячанг



Д. А. Нгуен
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Нгуен Дык Ань

Нячанг



Л. Х. Куан
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Россия

Ле Хонг Куан

Нячанг



В. Т. Чан
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Чан Ван Туан

Нячанг



Ч. В. Туан
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Нгуен Ван Чьеу

Нячанг



Н. Х. Нгуен
Приморское отделение, Совместный Российско-Вьетнамский тропический научно-исследовательский и технологический центр
Вьетнам

Нгуен Ньы Хынг

Нячанг



И. Д. Зарцын
Воронежский государственный университет
Вьетнам

Воронеж



Д. В. Лебедев
Воронежский государственный университет
Вьетнам

Воронеж



Список литературы

1. А.Г. Зоткин, Бетон и бетонные конструкции – Ростов-на-Дону : Феникс, 2019, 328 с. ISBN 978-5-4323-0106-2.

2. V.Q. Dang, Y. Ogawa, P.T. Bui and K. Kawai, Effects of chloride ions on the durability and mechanical properties of sea sand concrete incorporating supplementary cementitious materials under an accelerated carbonation condition, Construct. Build. Mater., 2021, 274, 122016. doi: 10.1016/j.conbuildmat.2020.122016.

3. M. Shen, A. Furman and A. Hansen, Protecting concrete reinforcement using admixture with migrating corrosion inhibitor and water repellent component, NACE CORROSION – NACE, 2014, 4250, NACE-2014-4250.

4. K. Osterminski, Zur voll-probabilistischen Modellierung der Korrosion von Stahl in Beton: Ein Beitrag zur Dauerhaftigkeitsbemessung von Stahlbetonbauteilen: Dis., Dr.-Ing., München, 2013, 211 p.

5. M. Ormellese, M. Berra, F. Bolzoni and T. Pastore, Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cem. Concr. Res., 2006, 36, no. 3, 536–547. doi: 10.1016/j.cemconres.2005.11.007.

6. J.S. Reoua and K.Y. Ann, The electrochemical assessment of corrosion inhibitor effect of calcium nitrite in blended concretes, Mater. Chem. Phys. 2008, 109, 526–533. doi: 10.1016/j.matchemphys.2007.12.030.

7. G. Batis and P. Pantazopoulou, Advantages of the simultaneous use of corrosion inhibitors and inorganic coatings, Cement and Concrete Technology in the 2000s Second International Symposium. 2000, 474–483.

8. A. Brenna, S. Beretta, M. Berra, M.V. Diamanti, M. Ormellese, T. Pastore, M.P. Pedeferri and F. Bolzoni, Effect of polymer modified cementitious coatings on chloride-induced corrosion of steel in concrete, Struct. Concr., 2019, 1–13. doi: 10.1002/suco.201900255.

9. M.V. Diamanti, A. Brenna, F. Bolzoni, M. Berra, T. Pastore and M. Ormellese, Effect of polymer modified cementitious coatings on water and chloride permeability in concrete, Constr. Build. Mater., 2013, 49, 720–728. doi: 10.1016/j.conbuildmat.2013.08.050.

10. M. Ormellese, F. Bolzoni, S. Goidanich, M.P. Pedeferri and A. Brenna, Corrosion inhibitors in reinforced concrete structures Part 3–migration of inhibitors into concrete, Cor. Eng., Sci. Tech., 2011, 46, no. 4, 334–339. doi: 10.1179/174327809X419230.

11. T.A. Söylev and M.G. Richardson, Corrosion inhibitors for steel in concrete: Stateof-the-art report, Constr. Build. Mater., 2008, 22, no. 4, 609–622. doi: 10.1016/j.conbuildmat.2006.10.013.

12. F. Bolzoni, S. Goidanich, L. Lazzari and M. Ormellese, Corrosion inhibitors in reinforced concrete structures. Part 2 – Repair system, Cor. Eng., Sci. Tech., 2006. 41, no. 3, 212–220. doi: 10.1179/174327806X111234.

13. A. Goyal, H.S. Pouya, E. Ganjian and P. Claisse, A review of corrosion and protection of steel in concrete, Arab. J. Sci. Eng., 2018, 43, 5035–5055. doi: 10.1007/s13369-018-3303-2.

14. H.E. Jamil, A. Shriri, R. Boulif, M.F. Montemor and M.G.S. Ferreira, Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor, Cem. Concr. Compos., 2005, 27, 671–678. doi: 10.1016/j.cemconcomp.2004.09.019.

15. J. Tritthart, Transport of a surface-applied corrosion inhibitor in cement paste and concrete, Cem. Concr. Res., 2003, 33, 829–834. doi: 10.1016/S0008-8846(02)01067-0.

16. A. Tiwari, S. Goyal, V. Luxami, M.K. Chakraborty and G. Prabhakar, Assessment of corrosion inhibition efficiency of generic compounds having different functional groups in carbonated pore solution with chlorides and migration ability in concrete, Constr. Build. Mater., 2021, 290, 123275. doi: 10.1016/j.conbuildmat.2021.123275.

17. B. Elsener, M. Büchler, F. Stalder and H. Böhni, Migrating Corrosion Inhibitor Blend for Reinforced Concrete: Part 1. Prevention of Corrosion, Corrosion, 1999, 55, no. 12. doi: 10.5006/1.3283953.

18. P. Kern and D. Landolt, Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance, Electrochim. Acta, 2001, 47, no. 4, 589–598. doi: 10.1016/S0013-4686(01)00781-2.

19. F. Violetta, F. Munteanu and F.D. Kinney, Proc. Int. Conf. «Superplasticizers and other chemical admixtures in concrete» Nizza, Italy. 2000, Paper 255.

20. J.K. Buffenbarger, M.A. Miltenberger, B.D. Miller and H.L. Casal, Proc. Int. Cong. on «Materials Week-Session E1: Corrosion of Steel in Concrete», Munich, Germany, 2000.

21. J.P. Broomfield, Corrosion inhibitors for steel in concrete, Concrete, 1999, 33, no. 6, 44–47.

22. D. Bjegovic, B.A. Miksic and R.D. Stehly, Test protocols for migrating corrosion inhibitors (MCI) in reinforced concrete, Mater. Cor., 2000, 51, no. 6, 444–452. doi: 10.1002/1521-4176(200006)51:6%3C444::AID-MACO444%3E3.0.CO;2-O.

23. D. Bjegovic and B.A. Miksic, Topically Applied migrating corrosion inhibitors for Reinforced Concrete Protection, EuroCorr 2000, London, England, 2000

24. A.S. Abdulrahman, M. Ismail and M.S. Hussain, Corrosion inhibitors for steel reinforcement in concrete: A review, Sci. Res. Essays., 2011, 6, no. 20, 4152–4162. doi: 10.5897/SRE11.1051.

25. C. Venkatesh, S.K. Mohiddin and N. Ruben, Corrosion inhibitors behaviour on reinforced concrete – a review, Sustainable Construction and Building Materials: Select Proceedings of ICSCBM 2018, 2018, 127–134. doi: 10.1007/978-981-13-33170_11.

26. İ. Topçu and A. Uzunömeroğlu, Use of Corrosion Inhibitors in Reinforced Concrete, Conference: 4. International Conference on Civil Environmental, Geology and Mining Engineering (ICOCEMTrabzon 2019), 2019, 34–50.

27. F. Bolzoni, A. Brenna and M. Ormellese, Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete, Cem. Concr. Res., 2022, 154, 106719. doi: 10.1016/j.cemconres.2022.106719.

28. S. Yuvaraj, K. Nirmalkumar, V.R. Kumar, R. Gayathzri and K. Mukilan, S. Shubikksha, Influence of corrosion inhibitors in reinforced concrete–A state of art of review, Mater. Today: Proceedings. 2022, 68, 2406–2412. doi: 10.1016/j.matpr.2022.09.118.

29. A.D. Portanguen, W. Prince, T. Lutz and G. Arliguie. Detection or quantitative analysis of a corrosion inhibitor, the sodium monofluorophosphate, in concrete, Cem. Concr. Compos., 2005, 27, 679–687. doi: 10.1016/j.cemconcomp.2004.11.002.

30. C. Andrade, C. Alonso, M. Acha and B. Malric, Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete, Cem. Concr. Res., 1996, 25, 405–415. doi: 10.1016/S0008-8846(96)85028-9.

31. A. Raharinaivo and B. Malric, Performance of monofluorophosphate inhibiting corrosion of steel in reinforced concrete structures, In: International conference on corrosion and rehabilitation of reinforced concrete structures. Orlando, USA; 1998

32. C.L. Page, Aspects of the performance of corrosion inhibitors applied to reinforced concrete, In: Proceedings of the ninth european symposium on corrosion inhibitors. Italy: University of Ferrara; 2000, 1, 261–276.

33. R. Palmer and B. Malric, Surface applied inhibitors: conditions for application and control of penetration, In: International congress on advanced materials, their processes and applications. Munich, Germany; 2000.

34. C. Monticelli, A. Fringnani and G. Trabanelli, Study on corrosion inhibitors for concrete application, Cem.Concr. Res., 2000, 30, no. 4, 635–642. doi: 10.1016/S0008-8846(00)00221-0.

35. T. Chaussadent, V. Nobel-Pujol, F. Farcas, M. Isabelle and C. Fiaud, Effectiveness conditions of sodium monoflurophosphate as a corrosion inhibitor for concrete reinforcements, Cem. Concr. Res., 2006, 36, no. 3, 556–561. doi: 10.1016/j.cemconres.2005.09.006.

36. F. Tittarelli, A. Mobili and T. Bellezze, The use of a Phosphate-based migrating corrosion inhibitor to repair reinforced concrete elements contaminated by chlorides, IOP conference series: materials science and engineering, IOP Publishing, 2017, 225, no. 1, 012106. doi: 10.1088/1757-899X/225/1/012106.

37. H. Tatematsu and T. Sasaki, Repair materials system for chloride-induced corrosion of reinforcing bars, Cem. Concr. Com., 2003, 25, 123–129. doi: 10.1016/S0958-9465 (01)00059-2.

38. M.M. Page, C.L. Page, V.T. Ngala and D.J. Anstice, Ion chromatographic analysis of corrosion inhibitors in concrete, Constr. Build. Mater., 2002, 16, 73–81. doi: 10.1016/S0950-0618(02)00017-X.

39. X.Y. Wang, S. Lee and H. Cho, Penetration properties and injecting conditions of corrosion inhibitor for concrete, Constr. Build. Mater., 2021, 284, 122761. doi: 10.1016/j.conbuildmat.2021.122761.

40. H. Zheng, W. Li, F. Ma and Q. Kong, The effect of a surface-applied corrosion inhibitor on the durability of concrete, Constr. Build. Mater., 2012, 37, 36–40. doi: 10.1016/j.conbuildmat.2012.07.007.

41. B. Elsener, M. Buchler, F. Stalder and H. Bohni, Migrating corrosion inhibitor blend for reinforced concrete: part 2 – Inhibitor as repair strategy, Corrosion, 2000, 56, no. 7, 727–732. doi: 10.5006/1.3280576.

42. W. Morris and M. Vazquez, A migrating corrosion inhibitor evaluated in concrete containing various contents of admixed chlorides, Cem. Concr. Res., 2002, 32, 259–267. doi: 10.1016/S0008-8846(01)00669-X.

43. W. Morris, A. Vico and M. Vazquez, The performance of a migrating corrosion inhibitor suitable for reinforced concrete, J. App. Electrochem., 2003, 33, 1183–1189. doi: 10.1023/B:JACH.0000003869.70729.3c.

44. G. Batis, A. Routoulas and E. Rakanta, Effects of migrating inhibitors on corrosion of reinforcing steel covered with repair mortar, Cem. Concr. Comp., 2003, 25, no. 1, 109–115. doi: 10.1016/S0958-9465(01)00047-6.

45. A.U. Malik, I. Andijani, F. Al-Moaili and G. Ozair, Studies on the performance of migratory corrosion inhibitors in protection of rebar concrete in Gulf seawater environment, Cem. Concr. Comp., 2004, 26, no. 3, 235–242. doi: 10.1016/S0958-9465(03)00042-8.

46. L. Fedrizzi, F. Azzolini and P.L. Bonora, The use of migrating corrosion inhibitors to repair motorways' concrete structures contaminated by chlorides, Cem. Concr. Res., 2005, 35, no. 3, 551–561. doi: 10.1016/j.cemconres.2004.05.018.

47. R. Vedalakshmi, K. Rajagopal and N. Palaniswamy, Determination of migration efficiency of amino alcohol based migrating corrosion inhibitor through concrete, Cor. Eng., Sci. Tech., 2009, 44, no. 1, 20–31. doi: 10.1179/174327808X272405.

48. H.H.B. Zheng, W.H. Li, F.B. Ma and Q.L. Kong, The effect of a surface-applied corrosion inhibitor on the durability of concrete, Constr. Build. Mater., 2012, 37, 36–40. doi: 10.1016/j.conbuildmat.2012.07.007.

49. Z.Y. Liu, X.G. Zhou and X.L. Li, Effect of migrating corrosion inhibitor on corrosion rate of reinforcing steel in concrete with various admixed chloride, App. Mech. Mat., 2012, 204, 3146–3150. doi: 10.4028/www.scientific.net/AMM.204-208.3146.

50. J.S. Cai, C.C. Chen, J.Z. Liu and L. Shi, The protection of reinforcing steel in concrete by migrating corrosion inhibitor, Key Eng. Mater., 2015, 629, 136–143. doi: 10.4028/www.scientific.net/KEM.629-630.136.

51. N. Song, W. Zixiao, L.I.U. Zhiyong, J. Zhou and D. Zheng, Study on improvement of durability for reinforced concrete by surface-painting migrating corrosion inhibitor and engineering application, IOP Conference Series: Materials Science and Engineering, IOP Publishing. 2017, 167, no. 1, 012072. doi: 10.1088/1757899X/167/1/012072.

52. C. Sun, M. Sun, J. Liu, Z. Dong, L. Fan and J. Duan, Anti-Corrosion Performance of Migratory Corrosion Inhibitors on Reinforced Concrete Exposed to Varying Degrees of Chloride Erosion, Materials, 2022, 15, no. 15, 5138. doi: 10.3390/ma15155138.

53. H. Wang, M. Jiang, M. Hang, Y. Yang, X. Zhou, X. Liu and G. Xu, Inhibition resistance and mechanism of migrating corrosion inhibitor on reinforced concrete under coupled carbonation and chloride attack, J. Build. Eng., 2023. 76, 107398. doi: 10.1016/j.jobe.2023.107398.

54. A.F. Theiss, C. Effting and A. Schackow, Influence of migrating inhibitor concentration on corrosion resistance of steel reinforcement in concrete, Engenharia Civil UM. 2023, 15–29. doi: 10.21814/ecum.4885.

55. S.H. Altushani and M.H. Almabrok, The effect of wetting-drying cycles on the properties of organic corrosion inhibitor concrete, Int. J. Appl. Res., 2024, 10, no. 1, 175–183. Doi: 10.22271/10-1-61-475

56. K. Zeng, W. Sun, L. Sun and L. Liu, Experimental Study on the Effect of Corrosion-inhibiting Admixtures on Chloride Corrosion Resistance of Concrete, Journal of Physics: Conference Series, IOP Publishing, 2024, 2736, no. 1, 012042. doi: 10.1088/1742-6596/2736/1/012042.

57. D. Bjegovic and B. Miksic, Migrating Corrosion Inhibitor Protection of Concrete, MP, NACE International, 1999, 38, no. 11.

58. A. Eydelnant, B. Miksic and L. Gelner, Migrating Corrosion Inhibitor for Reinforced Concrete, ConChem Journal, 1993. no. 2, 38–43.

59. M. Nagayama, H. Tamura and K. Shimozawa, Corrosion monitoring using embedded minisensors on rebars in concrete rehabilitated with a VCI, General Building Research Corporation of Japan. 1997.

60. B. Bavarian and L. Reiner, Improving durability of reinforced concrete structures using migrating corrosion inhibitors, NACE CORROSION. 2004, NACE-04323, 11 p.

61. M. Shen and J. Hicks, Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete, https://www.cortecvci.com/Publications/Papers/MCI_Migration.pdf.

62. B. Bavarian and L. Reiner, Corrosion Inhibition of Steel Rebar in Concrete by Migrating Corrosion Inhibitors, Eurocorr 2000. London, UK, 2000.

63. B. Bavarian and L. Reiner, Corrosion Protection of Steel Rebar in Concrete with Optimal Application of Migrating Corrosion Inhibitors, MCI 2022, The Cortec Corporation, 2003, 4119.

64. B. Bavarian and L. Reiner, Current progress in corrosion inhibition of reinforcing steel in concrete using migrating corrosion inhibitors, NACE CORROSION. 2006, NACE-06347.

65. B. Bavarian and L. Reiner, Improving durability of reinforced concrete structures using migrating corrosion inhibitors, NACE CORROSION. NACE, 2004, NACE04323.

66. B. Bavarian, A. Oluwaseye, L. Reiner and J. Meyer, Migrating corrosion inhibitors to protect reinforced concrete structures, NACE CORROSION. – NACE, 2018, NACE-2018-11011.

67. L. Holloway, K. Nairn and M. Forsyth, Concentration monitoring and performance of a migratory corrosion inhibitor in steel-reinforced concrete, Cem. Concr. Res., 2004, 34, no. 8, 1435–1440. doi: 10.1016/j.cemconres.2004.01.019.

68. M. Drew, J.J. Meyer, J. Hicks and S. Nešic, Evaluation of migrating corrosion inhibitors used in the restoration and repair of reinforced concrete structures, NACE CORROSION. – NACE, 2012, NACE-2012-1420.

69. P. Vrkljan, A. Furman and C. Chandler, Measuring the Effectiveness of Migration Corrosion Inhibitors MCI by Electrochemical Techniques, ConChem International Exhibition & Conference. Dusseldorf, Germany, 1997.

70. H.E. Sørensen and J.M. Frederiksen, Investigation of the effect of Cortec corrosion inhibitors MCI 2000 and MCI 2023, AEClaboratory. Report no: AEClab99-001, 1999, 40 p. https://www.cortecvci.com/publications/technical-papers/mci-migratingcorrosion-inhibitors-papers/mcitp7/

71. J. Kubo, Y. Tanaka, C.L. Page and M.M. Page, Application of electrochemical organic corrosion inhibitor injection to a carbonated reinforced concrete railway viaduct, Constr. Build. Mater., 2013, 39, 2–8. doi: 10.1016/j.conbuildmat.2012.05.010.

72. V.T. Ngala, C.L. Page and M.M. Page, Investigations of an ethanolamine‐based corrosion inhibitor system for surface treatment of reinforced concrete, Mater. Corros., 2004, 55, 511–519. doi: 10.1002/maco.200303768.

73. G. Mangayarkarasi and S. Muralidharan, Electrochemical protection of steel in concrete to enhance the service life of concrete structure, Proc. Eng., 2014, 86, 615– 622. doi: 10.1016/j.proeng.2014.11.087.

74. S.P. Karthick, A. Madhavamayandi, S. Murlidharan and V. Saraswathy, Electrochemical process to improve the durability of concrete structures, J. Build. Eng., 2016, 7, 273–280. doi: 10.1016/j.jobe.2016.07.005.

75. C. Xu, W.L. Jin, H.L. Wang, Z.Y. Li and J.H. Mao, Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by eletro-injection method, Constr. Build. Mater., 2016, 115, 602–617. doi: 10.1016/j.conbuildmat.2016.04.076.

76. F.L. Fei, J. Hu, Q.J. Yu, J.X. Wei and Y.B. Nong, The effect of a tailored electro‐ migrating corrosion inhibitor on the corrosion performance of chloride‐ contaminated reinforced concrete, Mater. Corros., 2015, 66, no. 10, 1039–1050. doi: 10.1002/maco.201508231.

77. C. Pan, X. Li and J. Mao, The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater, Materials, 2020, 13, no. 6, 1480. doi: 10.3390/ma13061480.

78. F. Bolzoni, A. Brenna, G. Fumagalli, S. Goidanich, L. Lazzari, M. Ormellese and M. Pedeferri, Experiences on corrosion inhibitors for reinforced concrete. Int. J. Corros. Scale Inhib., 2014, 3, no. 4, 254–278. doi: 10.17675/2305-6894-2014-3-4-254-278.

79. Н.Н. Андреев, И.А. Гедвилло, А.С. Жмакина, Т.Л. Зимина, В.Ф. Степанова и Л.П. Харитонова, Сравнение защитных свойств мигрирующих ингибиторов коррозии, Практика противокоррозионной защиты, 2014, no. 1, 14.

80. E.V. Starovoitova, N.N. Andreev, I.A. Gedvillo and A.S. Zhmakina, On the Use of Surfactants in the Production of Migrating Corrosion Inhibitors, Prot. Met. Phys. Chem. Surf., 2009, 45, no. 7, 792–795. doi: 10.1134/S2070205109070077.

81. E.V. Starovoitova, I.A. Gedvillo, A.S. Zhmakina and N.N. Andreev, NitriteBenzoate Inhibitors for Protection against Corrosion of Steel Reinforcement in Concrete, Prot. Met. Phys. Chem. Surf., 2010, 46, no. 7, 793–796. doi: 10.1134/S2070205110070105.

82. N.N. Andreev, E.V. Starovoitova and N.A. Lebedeva, Steel Corrosion Inhibition by Benzoic Acid Salts in Calcium Hydroxide Solutions, Prot. Met., 2008, 44, no. 7, 688–691. doi: 10.1134/S0033173208070072.

83. I.A. Gedvillo, A.S. Zhmakina, N.N. Andreev, S.S. Veselyi, V.A. Karpov and D.S. Mikurov, Field tests of the efficiency of the corrosion inhibitor IFKhAN-80 for reinforcement steel in concrete under tropical conditions. 1. Contact protection, Int. J. Corros. Scale Inhib., 2023, 12, no. 4, 1408–1416. doi: 10.17675/2305-6894-2023-12-4-3.

84. N.N. Andreev, D.S. Bulgakov, I.A. Gedvillo, A.S. Zhmakina and S.S. Vesely, On penetration of IFKhAN-80 migrating corrosion inhibitor into cement stone, Int. J. Corros. Scale Inhib., 2014, 3, no. 4, 238–245. doi: 10.17675/2305-6894-2014-3-4-238-245.

85. И.А. Гедвилло, А.С. Жмакина, Е.В. Старовойтова, В.Ф. Степанова, Т.Л. Зимина и Л.П. Харитонова, О влиянии ингибитора ИФХАН-80 на коррозионно-электрохимическое поведение арматурной стали в бетоне, Коррозия: материалы, защита, 2012, no. 12, 15–16.

86. N.N. Andreev, I.A. Gedvillo, A.S. Zhmakina, D.S. Bulgakov and S.S. Vesely, Environmental testing of the efficiency of IFKhAN-80, an inhibitor for corrosion protection of steel reinforcement in concrete, Int. J. Corros. Scale Inhib., 2016, 5, no. 4, 319–324. doi: 10.17675/2305-6894-2016-5-4-2.

87. N.L. Cao, D.S. Shevtsov, T.M.H. Le, V.C. Nguyen, D.A. Nguyen, V.K. Dong, V.T. Tran, I.V. Avetisyan and I.D. Zartsyn, Assessing the efficacy of IFKhAN-80 as a migrating corrosion inhibitor for reinforcing steel in new and chloridecontaminated concrete via polarization resistance method, Int. J. Corros. Scale Inhib., 2024, 13, no. 4, 2007–2021. doi: 10.17675/2305-6894-2024-13-4-6.

88. Н.Н. Андреев, Д.С. Булгаков, И.А. Гедвилло и А.С. Жмакина, О проникновении в цементный камень мигрирующего ингибитора коррозии ИФХАН-80, Коррозия: материалы, защита, 2014, 12, 24–28.

89. I.A. Gedvillo, A.S. Zhmakina, N.N. Andreev and S.S. Vesely, Protection of rusted reinforcing steel in concrete by IFKhAN-85 inhibitor, Int. J. Corros. Scale Inhib., 2020, 9, no. 2, 562–570. doi: 10.17675/2305-6894-2020-9-2-11.

90. N.S. Berke, B.E. Bucher, K.M. Ade and P.K. DeNicola, Organofunctional silane inhibitor surface treatment of concrete for corrosion, Transp. Res. Rec., 2016, 2550, 115–122. doi: 10.3141/2550-15.

91. L. Coppola, D. Coffetti, E. Crotti, G. Gazzaniga and T. Pastore, Chloride diffusion in concrete protected with a silane-based corrosion inhibitor, Materials. 2020, 13, 2001. doi: 10.3390/ma13082001.

92. A. Goyal, E. Ganjian, H.S. Pouya and M. Tyrer, Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment, Constr. Build. Mater., 2021, 303, 124461. doi: 10.1016/j.conbuildmat.2021.124461.

93. D.S. Shevtsov and I.D. Zarcyn, Evaluation of the effectiveness of migrating corrosion inhibitors and hydrophobizers for protection against corrosion of steel reinforcement in concrete using bimetallic batch sensor, Int. J. Corros. Scale Inhib., 2018, 7, no. 3, 427–442. doi: 10.17675/2305-6894-2018-7-3-12.

94. З.У. Беппаев, Л.Х. Аствацатурова, С.А. Колодяжный, С.А. Вернигора и В.В. Лопатинский, Определение способности мигрирующих ингибиторов коррозии стали пассивировать корродирующую арматуру в железобетонных конструкциях, Бетон и железобетон, 2023, no. 5/6 (619), 33–43. doi: 10.37538/0005-9889-2023-5/6(619)-33-43.

95. D.S. Shevtsov, N.L. Cao, I.D. Zartsyn, V.C. Nguyen, Q.Q. Nong, H.Q. Le, D.A. Nguyen, E.S. Komarova, D.A. Zhikhareva, O.A. Kozaderov and A.T. Nguyen, Evaluation of the efficiency of the secondary corrosion protection of steel reinforcement bars in concrete using a bimetallic batch sensor, Int. J. Corros. Scale Inhib., 2022, 11, no. 3, 1228–1237. doi: 10.17675/2305-6894-2022-11-3-19.

96. A.S. Tarasov, M.A. Khvastin, I.A. Gedvillo, A.S. Zhmakina, S.S. Vesely, N.N. Andreev and M.A. Chayko, On the depth of penetration of migrating corrosion inhibitor Haenytex Protectoseal CI into concrete, Int. J. Corros. Scale Inhib., 2023, 12, no. 4, 2327–2332. doi: 10.17675/2305-6894-2023-12-4-46.


Рецензия

Для цитирования:


Као Н.Л., Шевцов Д.С., Нгуен В.Ч., Нгуен Д.А., Куан Л.Х., Чан В.Т., Туан Ч.В., Нгуен Н.Х., Зарцын И.Д., Лебедев Д.В. Мигрирующие ингибиторы хлоридной коррозии стальной арматуры в бетоне. Обзор. Коррозия: защита материалов и методы исследований. 2025;(2):1-23. https://doi.org/10.61852/2949-3412-2025-3-2-1-23

For citation:


Cao N.L., Shevtsov D.S., Nguyen V.C., Nguyen D.A., Quan L.H., Tran V.T., Trieu N.V., Nguyen N.H., Zartsyn I.D., Lebedev D.V. Migrating inhibitors of chloride corrosion of steel reinforcement in concrete. Review. Title in english. 2025;(2):1-23. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-2-1-23

Просмотров: 22


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.