Potential of aqueous Cupressus macrocarpa extract (CME) as ecofriendly corrosion inhibitor against aluminum in HCl environment
https://doi.org/10.61852/2949-3412-2025-3-2-68-81
Abstract
Cupressus is one of several genera of evergreen conifers within the family Cupressaceae that have the common name cypress. The efficiency of Cupressus macrocarpa extract (CME) as corrosion inhibitor for Al in 1 M HCl medium was carried out using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation techniques. The results prove that the chemical content of CME can inhibit the corrosion rate of Al and exhibit high inhibition efficiency. Also, the results showed variation in inhibition performance of the extract with varying concentrations, immersion time and temperature. Temkin was tested to describe the adsorption behavior of the extract on the Al surface. Potentiodynamic polarization study clearly revealed that extract acts as a mixed type of inhibitor. According to the EIS study’s findings, the charge transfer resistance (Rct) increased while the double layer capacitance (Cdl) decreased. The extract is adsorbed on the Al surface, covering larger area from the surface of Al and hence, %IE increases. The adsorption of the extract on the Al surface is spontaneous, according to kinetic and thermodynamic characteristics and stable. CME inhibits corrosion on the Al surface through physical and chemical adsorption. According to the findings, CME may be useful as a corrosion inhibitor for Al in 1 M HCl.
About the Authors
M. E. EissaSaudi Arabia
Chemistry Department, College of Science.
Riyadh 11623
E. E. El-Katori
Russian Federation
Chemistry Department, Faculty of Science New Valley University.
El Kharga-72511; Thi-qar, 64001
A. El-Hossainy
Egypt
Chemistry Department, Faculty of Science.
Mansoura-35516
E. M. El-Hossainy
Egypt
Chemistry Department, Faculty of Science.
Mansoura-35516
A. S. Fouda
Egypt
Chemistry Department, Faculty of Science.
Mansoura-35516
References
1. M. Scendo, Corrosion inhibition of copper by purine or adenine in sulphate solutions, Corros. Sci., 2007, 49, no. 10, 3953–3968. doi: 10.1016/j.corsci.2007.03.037
2. M. Dupra, T.N. Bui and F. Dabosi, Corrosion Inhibition of a Carbon Steel by 2Ethylamino-Ethanol in Aerated 3% NaCI Solutions – Effect of pH, Corrosion, 1979, 35, no. 9, 392–397. doi: 10.5006/0010-9312-35.9.392
3. J.M. Costa and J.M. Lluch, The use of quantum mechanics calculations for the study of corrosion inhibitors, Corros. Sci., 1984, 24, no. 11–12, 929–933. doi: 10.1016/0010938X(84)90113-6
4. B. Dus and Z. Szklarska-Smialowska, Effect of some phosphoroorganic compounds on the corrosion rate of various metals in acid solutions, Corrosion, 1972, 28, no. 3, 105–114. doi: 10.5006/0010-9312-28.3.105
5. A. Akiyama and K. Nobe, Electrochemical Characteristics of Iron in Acidic Solutions Containing Ring Substituted Benzoic Acids, J. Electrochem. Soc., 1970, 117, no. 8, 999–1003. doi: 10.1149/1.2407746
6. I.H. Farooqui, A. Hussain, M.A. Saini and P.A. Quarishi, Study of low cost ecofriendly compounds as corrosion inhibitors for cooling systems, Anti-Corros. Methods Mater., 1999, 46, no. 5, 328–335. doi: 10.1108/00035599910295508
7. A.Y. El-Etre, Inhibition of acid corrosion of aluminum using vanillin, Corros. Sci., 2001, 43, no. 6, 1031–1039. doi: 10.1016/S0010-938X(00)00127-X
8. A.Y. El-Etre, Inhibition of aluminum corrosion using Opuntia extract, Corros. Sci., 2003, 45, no. 11, 2485–2495. doi: 10.1016/S0010-938X(03)00066-0
9. M. Znini, Application of Essential Oils as green corrosion inhibitors for metals and alloys in different aggressive mediums, Arab. J. Med. Aromat. Plants, 2019, 5, no. 3, 1–34. doi: 10.48347/IMIST.PRSM/ajmap-v5i3.18664
10. I. Elmiziani, S. Houbairi, M. Essahli, S. Lhaloui and A. Lamiri, Lead corrosion inhibition by Cedrus atlantica as a green inhibitor in 0.1 M Na2CO3 solution, Int. J. Adv. Chem., 2017, 5, 1–7. doi: 10.14419/ijac.v5i1.7115
11. F. Bensabah, S. Houbairi, M. Essahli, A. Lamiri and J. Naja, Chemical composition and inhibitory effect of the essential oil from Mentha Spicata irrigated by wastewater on the corrosion of aluminum in 1 molar hydrochloric acid, Port. Electrochim. Acta, 2013, 31, 195–206. doi: 10.4152/pea.201304195
12. O.K. Abiola, N.C. Oforka, E.E. Ebenso and N.M. Nwinuka, Eco-friendly corrosion inhibitors: the inhibitive action of Delonix Regia extract for the corrosion of aluminium in acidic media, Anti-Corros. Methods Mater., 2007, 54, no. 4, 219–224. doi: 10.1108/00035590710762357
13. B. Tan, W. Lan, Sh. Zhang, H. Deng, Y. Qiang, A. Fu, Y. Ran, J. Xiong, R. Marzouki and W. Li, Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution, Colloids Surf., A, 2022, 645, 128892–128899. doi: 10.1016/j.colsurfa.2022.128892
14. B. Tan, A. Fu, L. Guo, Y. Ran, J. Xiong, R. Marzouki and W. Li, Insight into anticorrosion mechanism of Dalbergia odorifera leaves extract as a biodegradable inhibitor for X70 steel in sulfuric acid medium, Ind. Crops Prod., 2023, 194, 116106– 116110. doi: 10.1016/j.indcrop.2022.116106
15. B. Tan, Sh. Zhang, X. Cao, A. Fu, L. Guo and W. Li, Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium, J. Colloid Interface Sci., 2022, 609, 838–851. doi: 10.1016/j.jcis.2021.11.085
16. O.S. Shehata, L.A. Korshed, and A. Attia, Green corrosion inhibitors, past, present, and future, Corros. Inhib., Princ. Recent Appl., 2018, 121–141. doi: 10.5772/intechopen.72753
17. O.K. Abiola and J.O.E. Otaigbe, The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution, Corros. Sci., 2009, 51, no. 11, 2790–2793. doi: 10.1016/j.corsci.2009.07.006
18. O.K. Abiola, J.O.E. Otaigbe and O.J. Kio, Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution, Corros. Sci., 2009, 51, no. 8, 1879–1881. doi: 10.1016/j.corsci.2009.04.016
19. A.M. Abdel-Gaber, E. Khamis, H. Abo-ElDahab and S. Adeel, Inhibition of aluminium corrosion in alkaline solutions using natural compound, Mater. Chem. Phys., 2008, 109, no. 2–3, 297–305. doi: 10.1016/j.matchemphys.2007.11.038
20. A.S. Fouda, A.F. Molouk, M.F. Atia, A. El-Hossiany and M.S. Almahdy, Verbena officinalis (VO) leaf extract as an anti-corrosion inhibitor for carbon steel in acidic environment, Sci. Rep., 2024, 14, 16112. doi: 10.1038/s41598-024-65266-z
21. U.J. Timothy, N.K. Ankah, P.S. Umoren, M.M. Solomon, I.O. Igwe and S.A. Umoren, Assessment of Berlinia grandiflora and cashew natural exudate gums as sustainable corrosion inhibitors for mild steel in an acidic environment, J. Environ. Chem. Eng., 2023, 11, no. 6, 111578–11582. doi: 10.1016/j.jece.2023.111578
22. A.S. Fouda, S.E.H. Etaiw, A.M. Ibrahim and A.A. El-Hossiany, Insights into the use of two novel supramolecular compounds as corrosion inhibitors for stainless steel in a chloride environment: experimental as well as theoretical investigation, RSC Adv., 2023, 13, 35305–35320. doi: 10.1039/D3RA07397A
23. M.M. Solomon and S.A. Umoren, Performance evaluation of poly (methacrylic acid) as corrosion inhibitor in the presence of iodide ions for mild steel in H2SO4 solution, J. Adhes. Sci. Technol., 2015, 29, no. 11, 1060–1080. doi: 10.1080/01694243.2015.1017436
24. N.A. Ibrahim, H.R. El-Seedi and M.M.D. Mohammed, Constituents and biological activity of the chloroform extract and essential oil of Cupressus sempervirens, Chem. Nat. Compd., 2009, 45, 309–313. doi: 10.1007/s10600-009-9356-4
25. A. Rottenberg and D. Zohary, The wild ancestry of the cultivated artichoke, Genet. Resour. Crop Evol., 1996, 43, 53–58. doi: 10.1007/BF00126940
26. F.M. Harraz, H.M. Hammoda, A. El-Hawiet, M.M. Radwan, A.S. Wanas, A.M. Eid and M.A. ElSohly, Chemical constituents, Antibacterial and Acetylcholine esterase inhibitory activity of Cupressus macrocarpa leaves, Nat. Prod. Res., 2020, 34, no. 6, 816–822. doi: 10.1080/14786419.2018.1508140
27. A. Rizi, A. Sedik, A. Acidi, K.O. Rachedi, H. Ferkous, M. Berredjem, A. Delimi, A. Abdennouri, M. Alam, B. Ernst and B. Ernst, Sustainable and Green Corrosion Inhibition of Mild Steel: Insights from Electrochemical and Computational Approaches, ACS Omega, 2023, 8, no. 49, 47224–47238. doi: 10.1021/acsomega.3c06548
28. J.S. Ye, X. Liu, H.F. Cui, W.-D. Zhang, F.-S. Sheu and T.M Lim, Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors, Electrochem. commun., 2005, 7, no. 3, 249–255. doi: 10.1016/j.elecom.2005.01.008
29. M.E. Eissa, S.H. Etaiw, E.S. El-Hussieny, A.A. El-Hossiany and A.S. Fouda, Sweet Orange Peel Extract as green sustainable corrosion inhibitor for Al in 1 M HCl, Int. J. Electrochem. Sci., 2025, 20, no. 1, 100882–100893. doi: 10.1016/j.ijoes.2024.100882
30. T.P. Hoar and R.D. Holliday, The inhibition by quinolines and thioureas of the acid dissolution of mild steel, J. Appl. Chem., 1953, 3, no. 11, 502–513. doi: 10.1002/jctb.5010031105
31. A.S. Fouda, S.M. Rashwan, M.M. Kamel, M. Atef and A. El-Hossiany, Eco-friendly impact of a novel green Melilotus officinalis extract as a sustainable inhibitor to reduce acid corrosion of copper, RSC Adv., 2024, 14, 37240–37251. doi: 10.1039/D4RA05391E
32. G.M. Schmid and H.J. Huang, Spectro-electrochemical studies of the inhibition effect of 4, 7-diphenyl-1, 10-phenanthroline on the corrosion of 304 stainless steel, Corros. Sci., 1980, 20, no. 8–9, 1041–1057. doi: 10.1016/0010-938X(80)90083-9
33. F. Bentiss, M. Lebrini, and M. Lagrenée, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2, 5-bis (n-thienyl)-1, 3, 4thiadiazoles/hydrochloric acid system, Corros. Sci., 2005, 47, no. 12, 2915–2931. doi: 10.1016/j.corsci.2005.05.034
34. M.A. Ali, A.A. El-Hossiany, A.M. Ouf, M.E. Elgamil and A. Fouda, Green Corrosion Inhi-bition of Carbon Steel by Expired Sulfaquinoxalineq Drug in 1 M HCl Medium: A Comp-rehensive Study, Egypt. J. Chem., 2024, 1–12. doi: 10.21608/ejchem.2024.324472.10535
35. A.Y. El-Etre, Inhibition of C-steel corrosion in acidic solution using the aqueous extract of zallouh root, Mater. Chem. Phys., 2008, 108, no. 2–3, 278–282. doi: 10.1016/j.matchemphys.2007.09.037
36. S. Kertit and B. Hammouti, Corrosion inhibition of iron in 1 M HCl by 1-phenyl5mercapto-1,2,3,4-tetrazole, Appl. Surf. Sci., 1996, 93, no. 1, 59–66. doi: 10.1016/01694332(95)00189-1
37. D.C. Silverman and J.E. Carrico, Electrochemical impedance technique—a practical tool for corrosion prediction, Corrosion, 1988, 44, no. 5, 280–287. doi: 10.5006/1.3583938
38. A.S. Fouda, M. Nageeb, G.A. Gaber, A.S. Ahmed, A.A. El-Hossiany and M.F. Atia, Carob fruit extract as naturally products corrosion inhibitor for copper-nickel alloys in brine solutions, Sci. Rep., 2024, 14, 29290. doi: 10.1038/s41598-024-80589-7
39. F. Mansfeld, Recording and analysis of AC impedance data for corrosion studies, Corrosion, 1981, 37, no. 5, 301–307. doi: 10.5006/1.3621688
40. N. Ramdane, Z. Marsa, A. Delimi, A. Sedik, A. Boublia, G.Sh. Albakri, M. Abbas, K.K. Yadav, M. Gabsi, A. Djedouani, Kh.O. Rachedi, L. Toukal, H. Benzouid, M. Berredjem, H. Ferkous and Y. Benguerba, Synergistic shielding of copper from nitric acid corrosion: Unveiling the mechanisms through electrochemical, characterization, and computational insights with 2-Hydroxybenzaldehyde oxime, Inorg. Chem. Commun., 2024, 165, no. 3, 12479. doi: 10.1016/j.inoche.2024.112479
41. M. El Achouri, S. Kertit, H.M. Gouttaya, B. Nciri, Y. Bensouda, L. Perez, M.R. Infante and K. Elkacemi, Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide), Prog. Org. Coat., 2001, 43, no. 4, 267–273. doi: 10.1016/S0300-9440(01)00208-9
42. H.A. Ali, A.A. El-Hossiany, A.S. Abousalem, M.A Ismail, A.S. Fouda and E.A. Ghaith, Synthesis of new binary trimethoxyphenylfuran pyrimidinones as proficient and sustainable corrosion inhibitors for carbon steel in acidic medium: experimental, surface morphology analysis, and theoretical studies, BMC Chem., 2024, 18, 182. doi: 10.1186/s13065-024-01280-6
43. M. Lagrenee, B. Mernari, M. Bouanis, M. Traisnel and F. Bentiss, Study of the mechanism and inhibiting efficiency of 3,5-bis (4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media, Corros. Sci., 2002, 44, no. 3, 573–588. doi: 10.1016/S0010-938X(01)00075-0
44. M.M. Motawea, A. El-Hossiany, and A.S. Fouda, Corrosion control of copper in nitric acid solution using chenopodium extract, Int. J. Electrochem. Sci., 2019, 14, no. 2, 1372–1387. doi: 10.20964/2019.02.29
45. S.E.H. Etaiw, G.S. Hassan, A.A. El-Hossiany and A.S. Fouda, Nano-metal–organic frameworks as corrosion inhibitors for strengthening anti-corrosion behavior of carbon steel in a sulfuric acid environment: from synthesis to applications, RSC Adv., 2023, 13, 15222–15235. doi: 10.1039/D3RA01644G
46. S. Brioua, A. Delimi, H. Ferkous, S. Boukerche, H. Allal, A. Boublia, A. Djedouani, M. Berredjem, A. Kahlouche, Kh.O. Rachedi, A. Abdennouri, M. Alam, B. Ernst and Y. Benguerba, Enhancing corrosion resistance of XC38 steel using sulfur and nitrogencontaining phenyl thiosemicarbazone: A comprehensive experimental and computational analysis, J. Taiwan Inst. Chem. Eng., 2024, 165, 105718. doi: 10.1016/j.jtice.2024.105718
47. E. Kuş and F. Mansfeld, An evaluation of the electrochemical frequency modulation (EFM) technique, Corros. Sci., 2006, 48, no. 4, 965–979. doi: 10.1016/j.corsci.2005.02.023
48. G.A. Caignan, S.K. Metcalf and E.M. Holt, Thiophene substituted dihydropyridines, J. Chem. Crystallogr., 2000, 48, 415–422. doi: 10.1023/A:1009538107356
49. M.M. Özcan and J.-C. Chalchat, Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey, Int. J. Food Sci. Nutr., 2008, 59, no. 7–8, 691–698. doi: 10.1080/09637480701777944
50. X. Li, S. Deng, and X. Xie, Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution, Corros. Sci., 2014, 81, 162–175. doi: 10.1016/j.corsci.2013.12.021
51. O.O. Ajibola, D.T. Oloruntoba and B.O. Adewuyi, Metallurgical study of cast aluminium alloy used in hydraulic brake calliper, International Journal of Innovation and Scientific Research, 2014, 8, no. 2, 324–333.
52. M.J. Goldberg, J.G. Clabes and C.A. Kovac, Metal-polymer chemistry. II. Chromium– polyimide interface reactions and related organometallic chemistry, J. Vac. Sci. Technol. A, 1988, 6, 991–996. doi: 10.1116/1.575006
53. I.A.A. Aziz, I.A. Annon, M.H. Abdulkareem, M.M. Hanoon, M.H. Alkaabi, L.M. Shaker, A.A. Alamiery, W.N.R.W. Isahak and M.S. Takriff, Insights into corrosion inhibition behavior of a 5-mercapto-1,2,4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT studies, Lubricants, 2021, 9, no. 12, 122–131. doi: 10.3390/lubricants9120122
54. D.V. Lyapun, A.A. Kruzhilin, D.S. Shevtsov and K.S. Shikhaliev, Investigation of the inhibitory activity of some 3-aryl(hetaryl)-5-amino-1H-1,2,4-triazoles on copper chloride corrosion, Int. J. Corros. Scale Inhib., 2024, 13, no. 2, 874–891. doi: 10.17675/2305-6894-2024-13-2-12
Review
For citations:
Eissa M.E., El-Katori E.E., El-Hossainy A., El-Hossainy E.M., Fouda A.S. Potential of aqueous Cupressus macrocarpa extract (CME) as ecofriendly corrosion inhibitor against aluminum in HCl environment. Title in english. 2025;(2):24-50. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-2-68-81