Preview

Title in english

Advanced search

Potentiometric study of acidic corrosive environments containing oxidative cations

https://doi.org/10.61852/2949-3412-2025-3-2-109-121

Abstract

The article presents data on the redox properties of solutions of mineral acids (H2SO4, HCl, H3PO4) and their mixtures (H2SO4+H3PO4, HCl+H3PO4) containing Fe(III) and Fe(II) cations with a total concentration of 0.1 M. For these systems, the values of the electrode potentials of the Fe(III)/Fe(II) redox couple were measured in the temperature range of 20−95°C using potentiometry on a platinum electrode. The redox potentials of systems in the solutions in question are poorly described by the Nernst equation. The observed deviations result from the non-equivalent complexation of potential-determining species, namely Fe(III) and Fe(II) cations, with anions present in a solution due to dissociation of the acids. The active concentrations of Fe(III) and Fe(II) cations in these systems change non-equally, which affects the redox potential of a system. The deviation of a system’s redox properties from the Nernst equation is the stronger the higher the complexing ability of the ligands formed from the acid. The greatest deviation of the experimentally determined values of the electrode potential of the Fe(III)/Fe(II) redox couple from those calculated using the Nernst equation based on the reference value of the standard electrode potential of this redox couple (E°Fe(III)/Fe(II) = 0.771 V (25°С)) is observed in environments containing H3PO4.

About the Authors

Ya. G. Avdeev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation

31-4, Leninsky prospect, 119071 Moscow



T. E. Andreeva
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences
Russian Federation

31-4, Leninsky prospect, 119071 Moscow



References

1. Ya.G. Avdeev and Yu.I. Kuznetsov, Iron oxide and oxyhydroxide phases formed on steel surfaces and their dissolution in acidic media. Review, Int. J. Corros. Scale Inhib., 2023, 12, no. 2, 366–409. doi: 10.17675/2305-6894-2023-12-2-1

2. Ya.G. Avdeev and Yu.I. Kuznetsov, Effect of iron(III) salts on steel corrosion in acid solutions. A review, Int. J. Corros. Scale Inhib., 2021, 10, no. 3, 1069–1109. doi: 10.17675/2305-6894-2021-10-3-15

3. В.А. Захаров, О.А. Сонгина и Г.Б. Бектурова, Реальные потенциалы окислительно-восстановительных систем. (Обзор), Журн. аналит. химии, 1976, 31, № 11, 2212–2221.

4. Ya.G. Avdeev, T.E. Andreeva and Yu.I. Kuznetsov, A potentiometric study of an H2SO4–H3PO4–H2O system containing Fe(III) and Fe(II) cations, Int. J. Corros. Scale Inhib., 2018, 7, no. 3, 366–375. doi: 10.17675/2305-6894-2018-7-3-7

5. Ya.G. Avdeev, T.E. Andreeva, A.V. Panova and Yu.I. Kuznetsov, Effect of anionic composition of solutions of mineral acids containing Fe(III) on their oxidizing properties, Int. J. Corros. Scale Inhib., 2019, 8, no. 1, 139–149. doi: 10.17675/2305-6894-2019-8-1-12

6. A. Paulenova, S.E. Creager, J.D. Navratil and Y. Wei, Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions, J. Power Sources, 2002, 109, no. 2, 431–438. doi: 10.1016/S0378-7753(02)00109-X

7. А.В. Кузин, И.Г. Горичев и Ю.А. Лайнер, Особенности стимулирующего действия фосфат-ионов на кинетику растворения оксидов железа в кислой среде, Металлы, 2013, № 5, 24–29.

8. J. Burgess, 7 – Redox potentials, in Ions in Solution, Ed. J. Burgess, Woodhead Publishing, 1999, 93–105. doi: 10.1533/9781782420569.93

9. D.O. Whittemore and D. Langmuir, Standard electrode potential of Fe3++e− = Fe2+ from 5−35°C, J. Chem. Eng. Data, 1972, 17, no. 3, 288–290. doi: 10.1021/je60054a002

10. S.G. Bratsch, Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K, J. Phys. Chem. Ref. Data, 1989, 18, no. 1, 1–21. doi: 10.1063/1.555839

11. Ю.Ю. Лурье, Справочник по аналитической химии, Химия, Москва, 1971, 255– 265.

12. J.M. Casas, G. Crisóstomo and L. Cifuentes, Speciation of the Fe(II)–Fe(III)–H2SO4– H2O system at 25 and 50°C, Hydrometallurgy, 2005, 80, no. 4, 254–264. doi: 10.1016/j.hydromet.2005.07.012

13. G. Yue, L. Zhao, O.G. Olvera and E. Asselin, Speciation of the H2SO4–Fe2(SO4)3– FeSO4–H2O system and development of an expression to predict the redox potential of the Fe3+/Fe2+ couple up to 150°C, Hydrometallurgy, 2014, 147–148, 196–209. doi: 10.1016/j.hydromet.2014.05.008

14. X. Zhu, D.K. Nordstrom, R.B. McCleskey, R. Wang and X. Lu, Thermodynamic properties in the Fe(II)–Fe(III)–As(V)–HClO4–H2O and Fe(II)–Fe(III)–As(V)–HCl– H2O systems from 5 to 90°C, Chemical Geology, 2017, 460, 37–45. doi: 10.1016/j.chemgeo.2017.04.010

15. H. Majima and Y. Awakura, Water and Solute Activities of H2SO4–Fe2(SO4)3–H2O and HCl–FeCl3–H2O Solution Systems: Part I. Activities of Water, Metallurgical Transactions B, 1985, 16, 433–439. doi: 10.1007/BF02654841

16. А.В. Кузин, И.Г. Горичев, В.А. Шелонцев, А.Н. Кузьменко, О.Н. Плахотная и Л.В. Овсянникова, Роль комплексообразования при растворении оксидов железа в ортофосфорной кислоте, Вестн. Моск. ун-та. Сер. 2. Химия, 2021, 62, № 6, 515–522.

17. B. Belqat, A. Laghzizil, K. Elkacimi, A. Bouhaouss and S. Belcadi, Fluoride effect on the electrochemical behaviour of the Fe(III)/Fe(II) system in H3PO4+H2O+HF, J. Fluorine Chem., 2000, 105, 1–5. doi: 10.1016/S0022-1139(00)00256-6

18. Ya.G. Avdeev, T.E. Andreeva, A.V. Panova and E.N. Yurasova, A study of the H2SO4– H3PO4–H2O–Fe(III) system by cyclic voltammetry, Int. J. Corros. Scale Inhib., 2019, 8, no. 2, 411–421. doi: 10.17675/2305-6894-2019-8-2-18

19. Ya.G. Avdeev, T.E. Andreeva, A.V. Panova and Yu.I. Kuznetsov, Cyclic voltammetric study of the HCl–H3PO4–H2O–Fe(III) system, Int. J. Corros. Scale Inhib., 2020, 9, no. 2, 538–549. doi: 10.17675/2305-6894-2020-9-2-9

20. L. Michaelis and E. Friedheim, Potentiometric studies on complex iron systems, J. Biol. Chem., 1931, 91, no. 1, 343–353. doi: 10.1016/S0021-9258(18)76618-0

21. M.M. El Jamal, Experimental E-pH diagrams of Fe(III)/Fe(II) system in presence of variable concentration of different ligands, J. Chem. Technol. Metall., 2008, 43, no. 1, 129–138.

22. М.М. Рахимова, Т.М. Нурматов, Н.З. Юсупов, М.А. Исмаилова и Э.Ф. Файзуллаев, Координационные соединения железа с анионами одноосновных органических кислот. Модели процессов их образования, Журн. неорг. химии, 2013, 58, № 6, 813–818.

23. М.М. Рахимова, Н.З. Юсупов, К.Дж. Суяров, К.Г. Хасанова и Ш. Бекбудова, Сукцинатные координационные соединения железа, модели процессов их образования, Журн. неорг. химии, 2013, 58, № 8, 1090–1094.

24. М.М. Рахимова, Комплексообразование ионов Fe, Co, Mn и Cu с однои многоосновными органическими кислотами, нейтральными лигандами в водных растворах, Автореф. дисс. ... докт. хим. наук: 02.00.04, 02.00.01, Москва: ИХР РАН, 2013, 34 с.

25. J.-Y. Lee, J.Y. Oh, K.Y. Putri, M.H. Baik and J.-I. Yun, Redox behaviors of Fe(II/III) and U(IV/VI) studied in synthetic water and KURT groundwater by potentiometry and spectroscopy, J. Radioanal. Nucl. Chem., 2017, 312, 221–231. doi: 10.1007/s10967017-5233-y

26. I. Guzman, S.J. Thorpe and V.G. Papangelakis, Redox potential measurements in the H2SO4−FeSO4−Fe2(SO4)3−H2O system at high temperature using an Ir electrode, J. Electroanal. Chem., 2017, 799, 399–405. doi: 10.1016/j.jelechem.2017.06.036

27. Techniques of electrochemistry: Electrode Processes. V. 1., Eds.: E. Yeager and A.J. Salkind, Published by John Wiley & Sons Inc, New York, 1972, 592pp.


Review

For citations:


Avdeev Ya.G., Andreeva T.E. Potentiometric study of acidic corrosive environments containing oxidative cations. Title in english. 2025;(2):109-121. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-2-109-121

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.