Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Лазерная обработка поверхности алюминиевого сплава АД31 и его супергидрофобизация растворами органических кислот

https://doi.org/10.61852/2949-3412-2023-1-4-101-113

Аннотация

   В результате лазерной обработки на поверхности алюминиевого сплава АД31формируется равномерно неоднородная шероховатость. Дальнейшая обработка сплава этанольными растворами октадецилфосфоновой (ОДФК) и стеариновой (СК) кислотами приводит к его супергидрофобизации. Результаты кинетики деградации супергидрофобных покрытий в воде и условиях нейтрального солевого тумана свидетельствуют о высокой стабильности пленок ОДФК, полученных на лазеротекстурированной поверхности с высотой неровностей 9,82 мкм. Увеличить устойчивость пленок СК возможно при их послойном формировании с винилтриметоксисиланом. Защитная способность покрытий оценена поляризационными измерениями и коррозионными испытаниями.

Об авторе

А. М. Семилетов
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
Россия

119071

Ленинский проспект, 31, корп. 4

Москва



Список литературы

1. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 1997, 202, 1–8. doi: 10.1007/s004250050096

2. D. Zhang, L. Wang, H. Qian and X. Li, Superhydrophobic surfaces for corrosion protection : a review of recent progresses and future directions, J. Coat. Technol. Res., 2016, 13, 11–29. doi: 10.1007/s11998-015-9744-6

3. J.T. Simpson, S.R. Hunter and T. Aytug, Superhydrophobic materials and coatings : a review, Rep. Prog. Phys., 2015, 78, 086501. doi:10.1088/0034-4885/78/8/086501

4. Z. Lu, P. Wang and D. Zhang, Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment, Corr. Sci., 2015, 91, 287–296. doi: 10.1016/j.corsci.2014.11.029

5. L.B. Boinovich, E.B. Modin, A.V. Aleshkin, K.A. Emelyanenko, E.R. Zulkarneev, I.A. Kiseleva, A.L. Vasiliev and A.M. Emelyanenko, Effective antibacterial nanotextured surfaces based on extreme wettability and bacteriophage seeding, ACS Appl. Nano Mater., 2018, 1, 1348−1359. doi: 10.1021/acsanm.8b00090

6. T. Kako, A. Nakajima, H. Irie, Z. Kato and K. Uematsu, Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels, J. Mater. Sci., 2004, 39, 547–555. doi: 10.1023/B:JMSC.0000011510.92644.3f

7. M.A. Sarshar, C. Swarctz, S. Hunter, J. Simpson and C.-H. Choi, Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions, Colloid. Polym. Sci., 2013, 291, 427–435. doi: 10.1007/s00396-012-2753-4

8. M.W. Kendig and R.G. Buchheit, Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings, Corrosion, 2003, 59, 379–400. doi:10.5006/1.3277570

9. V. Moutarlier, M.P. Gigandet, B. Normand, and J. Pagetti, EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species, Corr. Sci., 2005, 47, 937−951. doi: 10.1016/j.corsci.2004.06.019

10. A.M. Semiletov, A.A. Chirkunov and Yu.I. Kuznetsov, Protection of D16 Alloy against corrosion in neutral aqueous solutions and in an aggressive atmosphere using organic inhibitors, Prot. Met. Phys. Chem. Surf., 2020, 56, 1285–1292. doi: 10.1134/S2070205120070163

11. Kl. Xhanari and M. Finsgar, Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review, Arab. J. Chem., 2019, 12, 4646–4663. doi: 10.1016/j.arabjc.2016.08.009

12. J. Telegdi, G. Luciano, S. Mahanty and T. Abohalkuma, Inhibition of aluminum alloy corrosion in electrolytes by self-assembled fluorophosphonic acid molecular layer, Mat. and Corr., 2016, 67, 1027–1033. doi: 10.1002/maco.201508792

13. X. Li, Q. Zhang, Z. Guo, T. Shi, J. Yu, M. Tang and X. Huang, Fabrication of superhydrophobic surface with improved corrosioninhibition on 6061 aluminum alloy substrate, Appl. Surf. Sci., 2015, 342, 76–83. doi: 10.1016/j.apsusc.2015.03.040

14. A.M. Semiletov, A.A. Chirkunov and Yu.I. Kuznetsov, Protection of aluminum alloy AD31 from corrosion by adsorption layers of trialkoxysilanes and stearic acid, Mat. and Corr., 2020, 71, 77–85. doi: 10.1002/maco.201911000

15. K. Yin, J. Duan, X. Sun, C. Wang and Z. Luo, Formation of superwetting surface with line-patterned nanostructure on sapphire induced by femtosecond laser, Appl. Phys. A-Mater., 2015, 119, 69–74. doi: 10.1007/s00339-014-8957-3

16. A.Y. Vorobyev and C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications, Laser & Photon. Rev., 2013, 7, 385–407. doi: 10.1002/lpor.201200017

17. L.B. Boinovich, E.B. Modin, A.R. Sayfutdinova, K.A. Emelyanenko, A.L. Vasiliev and A.M. Emelyanenko, Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties, ACS Nano, 2017, 11, 10113–10123. doi: 10.1021/acsnano.7b04634

18. D. Zang, R. Zhu, W. Zhang, J. Wu, X. Yu and Y. Zhang, Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance, Corr. Sci., 2014, 83, 86–93. doi: 10.1016/j.corsci.2014.02.003

19. R. Luschtinetz, A.F. Oliveira, H.A. Duarte and G. Seifert, Self-assembled monolayers of alkylphosphonic acids on aluminum oxide surfaces – A theoretical study, J. Inorg. Gen. Chem., 2010, 636, 1506–1512. doi:10.1002/zaac.201000016

20. P.J. Hotchkiss, M. Malicki, A.J. Giordano, N.R. Armstrong and S.R. Marder, Characterization of phosphonic acid binding to zinc oxide, J. Mater. Chem., 2011, 21, 3107–3112. doi: 10.1039/c0jm02829k

21. P.J. Hotchkiss, S.C. Jones, S.A. Paniagua, A. Sharma, B. Kippelen, N.R. Armstrong and S.R. Marder, The modification of indium tin oxide with phosphonic acids: mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications, Acc. Chem. Res., 2012, 45, 337–346. doi: 10.1021/ar200119g

22. А.М. Семилетов, Ю.И. Кузнецов, А.А. Чиркунов, И.А. Архипушкин и Л.П. Казанский, Модификация поверхности сплава АД31 октадецилфосфоновой кислотой для его защиты от атмосферной коррозии, Коррозия: материалы, защита, 2020, 5, 13–20. doi: 10.31044/1813-7016-2020-0-5-13-20

23. C. Dai, N. Liu, Y. Cao, Y. Chen, F. Lua and L. Feng, Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for selfcleaning and oil/water separation, Soft Matter, 2014, 10, 8116–8121. doi: 10.1039/c4sm01616e

24. G.N. Fontes, A. Malachias, R. Magalhães-Paniago, and B.R.A. Neves, Structural investigations of octadecylphosphonic acid multilayers, Langmuir, 2003, 19, 3345–3349. doi: 10.1021/la0267847

25. C. Hansch and A. Leo, Correlation Analysis in Chemistry and Biology. 1981. New York: J.Wiley, 339 p.

26. T.T. Foster, M.R. Alexander, G.J. Leggett and E. McAlpine, Friction force microscopy of alkylphosphonic acid and carboxylic acids adsorbed on the native oxide of aluminum, Langmuir, 2006, 22, 9254–9259. doi: 10.1021/la061082t


Рецензия

Для цитирования:


Семилетов А.М. Лазерная обработка поверхности алюминиевого сплава АД31 и его супергидрофобизация растворами органических кислот. Коррозия: защита материалов и методы исследований. 2023;(4):101-113. https://doi.org/10.61852/2949-3412-2023-1-4-101-113

For citation:


Semiletov A.M. The laser treatment of aluminum alloy AD31 and its superhydrophobization with solutions of organic acids. Title in english. 2023;(4):101-113. (In Russ.) https://doi.org/10.61852/2949-3412-2023-1-4-101-113

Просмотров: 134


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.