Preview

Коррозия: защита материалов и методы исследований

Расширенный поиск

Ингибиторная защита латуни в растворах уксусной кислоты

https://doi.org/10.61852/2949-3412-2025-3-1-121-136

Аннотация

Изучена кинетика коррозии латуни ЛК62-0.5 в свободно аэрируемых растворах уксусной кислоты (0.25−8.0 M), а также влияние на этот процесс конвективного фактора среды и добавки замедлителя коррозии – катамина АБ. Ускоряющее действие на коррозию латуни в исследуемых средах, включая растворы, содержащие катамин АБ, оказывает присутствие продукта коррозии – катионов Cu(II). Зависимость скорости коррозии латуни от конвективного фактора в свободно аэрируемых растворах кислот и растворах кислот, содержащих катионы Cu(II), формально описывается уравнением вида k = a+b·n1/2, где a и b – эмпирические параметры, n – частота вращения пропеллерной магнитной мешалки, перемешивающей раствор. В растворах уксусной кислоты, включая перемешиваемые среды, содержащие катионы Cu(II), скорость коррозии латуни не превышает 0.91 г/(м2·ч). В тех же средах, содержащих добавку катамина АБ, скорость коррозии латуни не выше 0.14 г/(м2·ч). Учитывая низкую скорость коррозии латуни в ингибированных кислых средах полученный результат представляет практический интерес.

Об авторах

Я. Г. Авдеев
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Россия

119071, г. Москва, Ленинский проспект, д. 31, корп. 4 



К. Л. Анфилов
Федеральное государственное автономное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
Россия

105005, г. Москва, вн. тер. г. муниципальный округ Басманный, ул. 2-я Бауманская, д. 5, стр. 1



Т. Э. Андреева
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Россия

119071, г. Москва, Ленинский проспект, д. 31, корп. 4 



Список литературы

1. C. Verma, M.A. Quraishi and E.E. Ebenso, Corrosive electrolytes, Int. J. Corros. Scale Inhib., 2020, 9, no. 4, 1261–1276. doi: 10.17675/2305-6894-2020-9-4-5

2. M. Goyal, S. Kumar, I. Bahadur, C. Verma and E.E. Ebenso, Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, J. Mol. Liq., 2018, 256, 565–573. doi: 10.1016/j.molliq.2018.02.045

3. C.D.S. Tuck, C.A. Powell and J. Nuttall, 3.07 - Corrosion of Copper and its Alloys, Shreir's Corrosion, Eds. B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott, Elsevier, 2010, 1937–1973. doi: 10.1016/B978-044452787-5.00094-9

4. L. Burzyńska, A. Maraszewska and Z. Zembura, The corrosion of Cu-47.3 at% Zn brass in aerated 1.0 M HCl, Corros. Sci., 1996, 38, no. 2, 337–347. doi: 10.1016/0010-938X(96)00132-1

5. F. Branzoi and A. Băran, The Inhibition Effect of Some Organic Compounds on Corrosion of Brass and Carbon Steel in Aggressive Medium, Int. J. Electrochem. Sci., 2019, 14, no. 3, 2780–2803. doi: 10.20964/2019.03.55

6. A.S. Fouda, S. Rashwaan, H. Ibrahim and R.E. Ahmed, Corrosion Inhibition of α-brass Alloy in Aqueous Solution by Using Expired Ranitidine, Int. J. Electrochem. Sci., 2020, 15, no. 7, 5982–6000. doi: 10.20964/2020.07.62

7. H.E. Gadow and H.M. Elabbasy, Electrochemical study on the Efficiency of Curcuma extract as a green Inhibitor for Corrosion of α-brass in 1M HCl, Int. J. Electrochem. Sci., 2017, 12, no. 7, 5867–5887. doi: 10.20964/2017.07.13

8. N. Zulfareen, K. Kannan, T. Venugopal and S. Gnanavel, Synthesis, characterization and corrosion inhibition efficiency of N-(4-(Morpholinomethyl Carbamoyl Phenyl) Furan-2-Carboxamide for brass in HCl medium, Arab. J. Chem., 2016, 9, no. 1, 121– 135. doi: 10.1016/j.arabjc.2015.08.023

9. R. Khrifou, M. Galai, H. El Bakri, H. Larhzil, R. Touir, M. Ebn Touhami and Y. Ramli, Corrosion inhibition of brass in phosphoric acid solution by 2-(5-methyl-2-nitro-1Himidazol-1-yl)ethyl benzoate, Chem. Data Collect., 2019, 24, 100303. doi: 10.1016/j.cdc.2019.100303

10. H. Gerengi, K. Schaefer and H.I. Sahin, Corrosion-inhibiting effect of Mimosa extract on brass-MM55 corrosion in 0.5 M H2SO4 acidic media, J. Ind. Eng. Chem., 2012, 18, no. 6, 2204–2210. doi: 10.1016/j.jiec.2012.06.019

11. J. Jennane, M. Ebn Touhami, S. Zehra, Y. Baymou, S.-H. Kim, I.-M. Chung and H. Lgaz, Influence of sodium gluconate and cetyltrimethylammonium bromide on the corrosion behavior of duplex (α-β) brass in sulfuric acid solution, Mater. Chem. Phys., 2019, 227, 200–210. doi: 10.1016/j.matchemphys.2019.02.001

12. A.A. Elwarraky, Dissolution of brass 70/30 (Cu/Zn) and its inhibition during the acid wash in distillers. J. Mater. Sci., 1996, 31, 119–127. doi: 10.1007/BF00355134

13. Z. Avramovic and M. Antonijevic, Corrosion of cold-deformed brass in acid sulphate solution, Corros. Sci., 2004, 46, no. 11, 2793–2802. doi: 10.1016/j.corsci.2004.03.010

14. Я.Г. Авдеев, Высокотемпературная коррозия сталей в растворах кислот. Ч. 1. Методические особенности проведения исследований. Параметры коррозионного процесса. Обзор., Коррозия: материалы, защита, 2020, № 4, 1–16. doi: 10.31044/1813-7016-2020-0-4-1-16

15. M.N. Desai, Corrosion Inhibitors for Brasses, Materials and Corrosion, 1973, 24, no. 8, 707–716. doi: 10.1002/maco.19730240807

16. R.S. Shah and C.S. Desai, Corrosion of Brass by Acetic Acid and Chlorosubstituted Acetic Acids, Materials and Corrosion, 1976, 27, no. 10, 705–707. doi: 10.1002/maco.19760271006

17. R.H. Heidersbach and E.D. Verink, The Dezincification of Alpha and Beta Brasses, Corrosion, 1972, 28, no. 11, 397–418. doi: 10.5006/0010-9312-28.11.397

18. A. Nawaz, K.M. Deen, A. Farooq and R. Ahmed, Investigating the Electrochemical Behavior of Alpha Brass in Acidic and Alkaline Tap Water, Materials Today: Proceedings, 2015, 2, no. 10, Part B, 5170–5176. doi: 10.1016/j.matpr.2015.11.016

19. E. Sarver, Y. Zhang and M. Edwards, Review of Brass Dezincification Corrosion in Potable Water Systems, Corros. Rev., 2010, 28, nos. 3–4, 155–196. doi: 10.1515/CORRREV.2010.28.3-4.155

20. D. Zoubov, C. Vanleugenhaghe and M. Pourbaix, Copper, in Atlas of Electrochemical Equilibria in Aqueous Solutions. Second English Edition. Houston: National Association of Corrosion Engineers, 1974, 385–392.

21. Справочник химика. Т. 3. Химические равновесия и кинетика. Свойства растворов. Электродные процессы. Под. ред. Б.П. Никольского, O.Н. Григорова, M.E. Позина, Б.A. Парай-Кашица, В.A. Рабиновича, Ф.Ю. Рачинского, П.Г. Романкова и Д.A. Фридрихсберга, Москва-Ленинград, Химия, 1964, 755–825.

22. Ya.G. Avdeev and Yu.I. Kuznetsov, The influence of dissolved molecular oxygen on the corrosion of metals in aqueous acid solutions. Review, Int. J. Corros. Scale Inhib., 2024, 13, no. 2, 1103–1134. doi: 10.17675/2305-6894-2024-13-2-25

23. D. Zoubov and M. Pourbaix, Zinc, in Atlas of Electrochemical Equilibria in Aqueous Solutions. Second English Edition. Houston: National Association of Corrosion Engineers, 1974, 406–413.

24. K.M. Deen, N. Mehrjoo and E. Asselin, Thermo–Kinetic diagrams: The Cu–H2O– Acetate and the Cu–H2O systems, J. Electroanalytical Chem., 2021, 895, 115467. doi: 10.1016/j.jelechem.2021.115467

25. S. Tamilmani, W. Huang, S. Raghavan and R. Small, Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper, J. Electrochem. Society, 2002, 149, no. 12, G638–G642. doi: 10.1149/1.1516224

26. Ya.G. Avdeev and Yu.I. Kuznetsov, Effect of iron(III) salts on steel corrosion in acid solutions. A review, Int. J. Corros. Scale Inhib., 2021, 10, no. 3, 1069–1109. doi: 10.17675/2305-6894-2021-10-3-15

27. Ю.В. Плесков и В.Ю. Филиновский, Вращающийся дисковый электрод, Москва, Наука, 1972, 344 с.

28. Я.Г. Авдеев, А.В. Панова и Т.Э. Андреева, Роль конвективного фактора в коррозии низкоуглеродистой стали в растворе серной кислоты, содержащем сульфат железа(III), Журнал физической химии, 2023, 97, № 5, 730–446. doi: 10.31857/S0044453723050059

29. Я.Г. Авдеев, К.Л. Анфилов и Ю.И. Кузнецов, Коррозия меди в растворах уксусной кислоты, Коррозия: защита материалов и методы исследований, 2023, 1, № 1, 56–69. doi: 10.61852/2949-3412-2023-1-1-56-69

30. Я.Г. Авдеев, К.Л. Анфилов и Ю.И. Кузнецов, Коррозия меди в растворах лимонной кислоты, Коррозия: защита материалов и методы исследований, 2023, 1, № 4, 151–165. doi: 10.1234/2949-3412-2023-1-4-151-165


Рецензия

Для цитирования:


Авдеев Я.Г., Анфилов К.Л., Андреева Т.Э. Ингибиторная защита латуни в растворах уксусной кислоты. Коррозия: защита материалов и методы исследований. 2025;(1):121-136. https://doi.org/10.61852/2949-3412-2025-3-1-121-136

For citation:


Avdeev Ya.G., Anfilov K.L., Andreeva T.E. Inhibitor protection of brass in acetic acid solutions. Title in english. 2025;(1):121-136. (In Russ.) https://doi.org/10.61852/2949-3412-2025-3-1-121-136

Просмотров: 48


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.